Struct num_quaternion::UnitQuaternion
source · pub struct UnitQuaternion<T>(/* private fields */);Expand description
A quaternion with norm $1$.
Unit quaternions form a non-commutative group that can be conveniently used
for rotating 3D vectors. A 3D vector can be interpreted as a pure
quaternion (a quaternion with a real part of zero). Such a pure quaternion
$v$ can be rotated in 3D space by computing $q^{-1} \cdot v \cdot q$ for a
unit quaternion $q$. The resulting product is again a pure quaternion,
which is $v$ rotated around the axis given by the imaginary part of $q$.
The method rotate_vector performs this
operation efficiently. The angle of rotation is double the angle between
$1$ and $q$ interpreted as 4D vectors.
You can create a UnitQuaternion by normalizing a Quaternion using the
Quaternion::normalize method. Alternatively, you can use
from_euler_angles or
from_rotation_vector to obtain
one. The inverse functions
to_euler_angles and
to_rotation_vector are also
provided.
UnitQuaternion offers the same arithmetic operations as Quaternion.
Multiplying two unit quaternions yields a unit quaternion in theory.
However, due to limited machine precision, rounding errors accumulate
in practice and the resulting norm may deviate from $1$ over time.
Thus, when you multiply unit quaternions many times, you may need
to adjust the norm to maintain accuracy. This can be done by calling
the function adjust_norm.
Furthermore, you can interpolate uniformly between two quaternions using
the slerp method, which stands for spherical
linear interpolation. This can be used for smooth transitions between
3D rotations.
See also Quaternion.
§Examples
Basic usage:
// Creating a UnitQuaternion from Euler angles
let (roll, pitch, yaw) = (1.5, 1.0, 3.0);
let uq = UnitQuaternion::from_euler_angles(roll, pitch, yaw);
// Rotating a vector using the UnitQuaternion
let vector = [1.0, 0.0, 0.0];
let rotated_vector = uq.rotate_vector(vector);Implementations§
source§impl<T> UnitQuaternion<T>where
T: Float,
impl<T> UnitQuaternion<T>where
T: Float,
sourcepub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self
pub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self
Creates a new Quaternion from roll, pitch and yaw angles.
sourcepub fn from_euler_angles_struct(angles: EulerAngles<T>) -> Self
pub fn from_euler_angles_struct(angles: EulerAngles<T>) -> Self
Creates a new Quaternion from Euler angles.
Note. The reason that this function is marked as unstable is that I’m not 100%
confident about the naming of the function.
source§impl<T> UnitQuaternion<T>where
T: Float + FloatConst,
impl<T> UnitQuaternion<T>where
T: Float + FloatConst,
sourcepub fn to_euler_angles(&self) -> EulerAngles<T>
pub fn to_euler_angles(&self) -> EulerAngles<T>
Converts the UnitQuaternion to roll, pitch, and yaw angles.
source§impl<T> UnitQuaternion<T>where
T: Float,
impl<T> UnitQuaternion<T>where
T: Float,
sourcepub fn from_rotation_vector(v: &[T; 3]) -> Self
pub fn from_rotation_vector(v: &[T; 3]) -> Self
Returns a quaternion from a vector which is parallel to the rotation axis and whose norm is the rotation angle.
This function is the inverse of
to_rotation_vector.
source§impl<T> UnitQuaternion<T>where
T: Float + FloatConst,
impl<T> UnitQuaternion<T>where
T: Float + FloatConst,
sourcepub fn to_rotation_vector(&self) -> [T; 3]
pub fn to_rotation_vector(&self) -> [T; 3]
Returns a rotation vector which is parallel to the rotation axis and whose norm is the rotation angle.
This function is the inverse of
from_rotation_vector.
source§impl<T> UnitQuaternion<T>
impl<T> UnitQuaternion<T>
sourcepub fn to_rotation_matrix3x3(self) -> [T; 9]
pub fn to_rotation_matrix3x3(self) -> [T; 9]
Computes the rotation matrix implied by a unit quaternion.
The matrix is returned in row major order, i. e. the indices into the result array yield the elements in the following order:
[0, 1, 2,
3, 4, 5,
6, 7, 8]
Multiplying by the returned matrix gives the same result as using
rotate_vector modulo slightly
different rounding errors.
§Runtime Considerations
The matrix multiplication itself can be assumed to be more runtime
efficient than rotate_vector.
However, computing the matrix also comes with additional cost. Thus
general advice is: Use rotate_vector,
if you want to rotate a single vector. Perform the matrix
multiplication, if more than one vector needs to be rotated.
source§impl<T> UnitQuaternion<T>where
T: Float,
impl<T> UnitQuaternion<T>where
T: Float,
sourcepub fn from_rotation_matrix3x3(mat: &impl ReadMat3x3<T>) -> UnitQuaternion<T>
pub fn from_rotation_matrix3x3(mat: &impl ReadMat3x3<T>) -> UnitQuaternion<T>
Computes a quaternion from a 3x3 rotation matrix.
The input matrix $O$ is required to be an actual rotation matrix, i. e. $O^TO$ is the identity matrix and $\det O = 1$ (neglecting floating point rounding errors).
The quaternion solution with non-negative real part is returned. This
function reverses the method
to_rotation_matrix3x3.
source§impl<T> UnitQuaternion<T>where
T: Float,
impl<T> UnitQuaternion<T>where
T: Float,
sourcepub fn from_two_vectors(a: &[T; 3], b: &[T; 3]) -> UnitQuaternion<T>
pub fn from_two_vectors(a: &[T; 3], b: &[T; 3]) -> UnitQuaternion<T>
Returns a unit quaternion that rotates vector $\vec a$ to vector $\vec b$ with the minimum angle of rotation.
The method rotate_vector can be used
to apply the rotation. The resulting unit quaternion maps the ray
${t\vec{a} : t > 0}$ to the ray ${t\vec{b} : t > 0}$.
Note that the input vectors neither need to be normalized nor have the same magnitude. In the case where the input vectors point in opposite directions, there are multiple solutions to the problem, and one will be returned. If one (or both) of the input vectors is the zero vector, the unit quaternion $1$ is returned.
source§impl<T> UnitQuaternion<T>
impl<T> UnitQuaternion<T>
sourcepub const ONE: Self = _
pub const ONE: Self = _
A constant UnitQuaternion of value $1$.
See also UnitQuaternion::one, Quaternion::ONE.
sourcepub const I: Self = _
pub const I: Self = _
A constant UnitQuaternion of value $i$.
See also UnitQuaternion::i, Quaternion::I.
sourcepub const J: Self = _
pub const J: Self = _
A constant UnitQuaternion of value $j$.
See also UnitQuaternion::j, Quaternion::J.
sourcepub const K: Self = _
pub const K: Self = _
A constant UnitQuaternion of value $k$.
See also UnitQuaternion::k, Quaternion::K.
source§impl<T> UnitQuaternion<T>
impl<T> UnitQuaternion<T>
sourcepub fn i() -> Self
pub fn i() -> Self
Returns the imaginary unit $i$.
See also UnitQuaternion::I, Quaternion::i.
sourcepub fn j() -> Self
pub fn j() -> Self
Returns the imaginary unit $j$.
See also UnitQuaternion::J, Quaternion::j.
sourcepub fn k() -> Self
pub fn k() -> Self
Returns the imaginary unit $k$.
See also UnitQuaternion::K, Quaternion::k.
source§impl<T> UnitQuaternion<T>
impl<T> UnitQuaternion<T>
sourcepub fn into_quaternion(self) -> Quaternion<T>
pub fn into_quaternion(self) -> Quaternion<T>
Returns the inner quaternion.
sourcepub fn as_quaternion(&self) -> &Quaternion<T>
pub fn as_quaternion(&self) -> &Quaternion<T>
Returns a reference to the inner quaternion.
source§impl<T> UnitQuaternion<T>
impl<T> UnitQuaternion<T>
source§impl<T> UnitQuaternion<T>
impl<T> UnitQuaternion<T>
source§impl<T> UnitQuaternion<T>
impl<T> UnitQuaternion<T>
source§impl<T> UnitQuaternion<T>where
T: Float,
impl<T> UnitQuaternion<T>where
T: Float,
sourcepub fn adjust_norm(self) -> Self
pub fn adjust_norm(self) -> Self
Renormalizes self.
By many multiplications of unit quaternions, round off errors can lead to norms which are deviating from $1$ significantly. This function fixes that inaccuracy.
source§impl<T> UnitQuaternion<T>
impl<T> UnitQuaternion<T>
sourcepub fn rotate_vector(self, vector: [T; 3]) -> [T; 3]
pub fn rotate_vector(self, vector: [T; 3]) -> [T; 3]
Rotates a vector using a quaternion.
Given a unit quaternion $q$ and a pure quaternion $v$ (i. e. a quaternion with real part zero), the mapping $v \mapsto q^*vq$ is a 3D rotation in the space of pure quaternions. This function performs this 3D rotation efficiently.
source§impl<T> UnitQuaternion<T>where
T: Float,
impl<T> UnitQuaternion<T>where
T: Float,
source§impl<T> UnitQuaternion<T>where
T: Float + FloatConst,
impl<T> UnitQuaternion<T>where
T: Float + FloatConst,
sourcepub fn sqrt(self) -> Self
pub fn sqrt(self) -> Self
Computes the square root of a unit quaternion.
Given an input unit quaternion $c$, this function returns the unit quaternion $q$ which satisfies $q^2 = c$ and has a real part with a positive sign.
For $c = -1$, there are multiple solutions to these constraints. In that case $q = \pm i$ is returned. The sign is determined by the input coefficient of the imaginary unit $i$.
In any case, the three imaginary parts of the result have the same sign as the three imaginary parts of the input.
Trait Implementations§
source§impl<T> Add<&Quaternion<T>> for &UnitQuaternion<T>
impl<T> Add<&Quaternion<T>> for &UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Add<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Add<Quaternion<T>>>::Output
+ operator.source§impl<T> Add<&Quaternion<T>> for UnitQuaternion<T>
impl<T> Add<&Quaternion<T>> for UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Add<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Add<Quaternion<T>>>::Output
+ operator.source§impl<T> Add<&T> for &UnitQuaternion<T>
impl<T> Add<&T> for &UnitQuaternion<T>
source§impl<T> Add<&T> for UnitQuaternion<T>
impl<T> Add<&T> for UnitQuaternion<T>
source§impl<T> Add<&UnitQuaternion<T>> for &Quaternion<T>
impl<T> Add<&UnitQuaternion<T>> for &Quaternion<T>
§type Output = <Quaternion<T> as Add<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Add<UnitQuaternion<T>>>::Output
+ operator.source§impl<T> Add<&UnitQuaternion<T>> for &UnitQuaternion<T>
impl<T> Add<&UnitQuaternion<T>> for &UnitQuaternion<T>
source§impl<T> Add<&UnitQuaternion<T>> for Quaternion<T>
impl<T> Add<&UnitQuaternion<T>> for Quaternion<T>
§type Output = <Quaternion<T> as Add<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Add<UnitQuaternion<T>>>::Output
+ operator.source§impl<T> Add<&UnitQuaternion<T>> for UnitQuaternion<T>
impl<T> Add<&UnitQuaternion<T>> for UnitQuaternion<T>
source§impl<T> Add<Quaternion<T>> for &UnitQuaternion<T>
impl<T> Add<Quaternion<T>> for &UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Add<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Add<Quaternion<T>>>::Output
+ operator.source§impl<T> Add<Quaternion<T>> for UnitQuaternion<T>
impl<T> Add<Quaternion<T>> for UnitQuaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
+ operator.source§impl<T> Add<T> for &UnitQuaternion<T>
impl<T> Add<T> for &UnitQuaternion<T>
source§impl<T> Add<T> for UnitQuaternion<T>
impl<T> Add<T> for UnitQuaternion<T>
source§impl<T> Add<UnitQuaternion<T>> for &Quaternion<T>
impl<T> Add<UnitQuaternion<T>> for &Quaternion<T>
§type Output = <Quaternion<T> as Add<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Add<UnitQuaternion<T>>>::Output
+ operator.source§impl<T> Add<UnitQuaternion<T>> for &UnitQuaternion<T>
impl<T> Add<UnitQuaternion<T>> for &UnitQuaternion<T>
source§impl<T> Add<UnitQuaternion<T>> for Quaternion<T>where
T: Add<T, Output = T>,
impl<T> Add<UnitQuaternion<T>> for Quaternion<T>where
T: Add<T, Output = T>,
§type Output = Quaternion<T>
type Output = Quaternion<T>
+ operator.source§impl<T> Add for UnitQuaternion<T>
impl<T> Add for UnitQuaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
+ operator.source§impl<T> Borrow<Quaternion<T>> for UnitQuaternion<T>
impl<T> Borrow<Quaternion<T>> for UnitQuaternion<T>
source§fn borrow(&self) -> &Quaternion<T>
fn borrow(&self) -> &Quaternion<T>
source§impl<T: Clone> Clone for UnitQuaternion<T>
impl<T: Clone> Clone for UnitQuaternion<T>
source§fn clone(&self) -> UnitQuaternion<T>
fn clone(&self) -> UnitQuaternion<T>
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moresource§impl<T> ConstOne for UnitQuaternion<T>
impl<T> ConstOne for UnitQuaternion<T>
source§impl<T: Debug> Debug for UnitQuaternion<T>
impl<T: Debug> Debug for UnitQuaternion<T>
source§impl<T> Default for UnitQuaternion<T>
impl<T> Default for UnitQuaternion<T>
source§impl<'de, T> Deserialize<'de> for UnitQuaternion<T>where
T: Deserialize<'de>,
impl<'de, T> Deserialize<'de> for UnitQuaternion<T>where
T: Deserialize<'de>,
source§fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
source§impl<T> Div<&Quaternion<T>> for &UnitQuaternion<T>
impl<T> Div<&Quaternion<T>> for &UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Div<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Div<Quaternion<T>>>::Output
/ operator.source§impl<T> Div<&Quaternion<T>> for UnitQuaternion<T>
impl<T> Div<&Quaternion<T>> for UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Div<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Div<Quaternion<T>>>::Output
/ operator.source§impl<T> Div<&T> for &UnitQuaternion<T>
impl<T> Div<&T> for &UnitQuaternion<T>
source§impl<T> Div<&T> for UnitQuaternion<T>
impl<T> Div<&T> for UnitQuaternion<T>
source§impl<T> Div<&UnitQuaternion<T>> for &Quaternion<T>
impl<T> Div<&UnitQuaternion<T>> for &Quaternion<T>
§type Output = <Quaternion<T> as Div<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Div<UnitQuaternion<T>>>::Output
/ operator.source§impl<T> Div<&UnitQuaternion<T>> for &UnitQuaternion<T>
impl<T> Div<&UnitQuaternion<T>> for &UnitQuaternion<T>
source§impl<T> Div<&UnitQuaternion<T>> for Quaternion<T>
impl<T> Div<&UnitQuaternion<T>> for Quaternion<T>
§type Output = <Quaternion<T> as Div<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Div<UnitQuaternion<T>>>::Output
/ operator.source§impl<T> Div<&UnitQuaternion<T>> for UnitQuaternion<T>
impl<T> Div<&UnitQuaternion<T>> for UnitQuaternion<T>
source§impl<T> Div<Quaternion<T>> for &UnitQuaternion<T>
impl<T> Div<Quaternion<T>> for &UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Div<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Div<Quaternion<T>>>::Output
/ operator.source§impl<T> Div<Quaternion<T>> for UnitQuaternion<T>
impl<T> Div<Quaternion<T>> for UnitQuaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
/ operator.source§impl<T> Div<T> for &UnitQuaternion<T>
impl<T> Div<T> for &UnitQuaternion<T>
source§impl<T> Div<T> for UnitQuaternion<T>
impl<T> Div<T> for UnitQuaternion<T>
source§impl<T> Div<UnitQuaternion<T>> for &Quaternion<T>
impl<T> Div<UnitQuaternion<T>> for &Quaternion<T>
§type Output = <Quaternion<T> as Div<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Div<UnitQuaternion<T>>>::Output
/ operator.source§impl<T> Div<UnitQuaternion<T>> for &UnitQuaternion<T>
impl<T> Div<UnitQuaternion<T>> for &UnitQuaternion<T>
source§impl<T> Div<UnitQuaternion<T>> for Quaternion<T>
impl<T> Div<UnitQuaternion<T>> for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
/ operator.source§impl<T> Div for UnitQuaternion<T>
impl<T> Div for UnitQuaternion<T>
§type Output = UnitQuaternion<T>
type Output = UnitQuaternion<T>
/ operator.source§impl<'a, T> From<&'a UnitQuaternion<T>> for &'a Quaternion<T>
impl<'a, T> From<&'a UnitQuaternion<T>> for &'a Quaternion<T>
source§fn from(q: &'a UnitQuaternion<T>) -> Self
fn from(q: &'a UnitQuaternion<T>) -> Self
source§impl<T> From<UnitQuaternion<T>> for Quaternion<T>
impl<T> From<UnitQuaternion<T>> for Quaternion<T>
source§fn from(q: UnitQuaternion<T>) -> Self
fn from(q: UnitQuaternion<T>) -> Self
source§impl<T: Hash> Hash for UnitQuaternion<T>
impl<T: Hash> Hash for UnitQuaternion<T>
source§impl<T> Inv for &UnitQuaternion<T>
impl<T> Inv for &UnitQuaternion<T>
source§impl<T> Inv for UnitQuaternion<T>
impl<T> Inv for UnitQuaternion<T>
source§impl<T> Mul<&Quaternion<T>> for &UnitQuaternion<T>
impl<T> Mul<&Quaternion<T>> for &UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Mul<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Mul<Quaternion<T>>>::Output
* operator.source§impl<T> Mul<&Quaternion<T>> for UnitQuaternion<T>
impl<T> Mul<&Quaternion<T>> for UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Mul<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Mul<Quaternion<T>>>::Output
* operator.source§impl<T> Mul<&T> for &UnitQuaternion<T>
impl<T> Mul<&T> for &UnitQuaternion<T>
source§impl<T> Mul<&T> for UnitQuaternion<T>
impl<T> Mul<&T> for UnitQuaternion<T>
source§impl<T> Mul<&UnitQuaternion<T>> for &Quaternion<T>
impl<T> Mul<&UnitQuaternion<T>> for &Quaternion<T>
§type Output = <Quaternion<T> as Mul<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Mul<UnitQuaternion<T>>>::Output
* operator.source§impl<T> Mul<&UnitQuaternion<T>> for &UnitQuaternion<T>
impl<T> Mul<&UnitQuaternion<T>> for &UnitQuaternion<T>
source§impl<T> Mul<&UnitQuaternion<T>> for Quaternion<T>
impl<T> Mul<&UnitQuaternion<T>> for Quaternion<T>
§type Output = <Quaternion<T> as Mul<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Mul<UnitQuaternion<T>>>::Output
* operator.source§impl<T> Mul<&UnitQuaternion<T>> for UnitQuaternion<T>
impl<T> Mul<&UnitQuaternion<T>> for UnitQuaternion<T>
source§impl<T> Mul<Quaternion<T>> for &UnitQuaternion<T>
impl<T> Mul<Quaternion<T>> for &UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Mul<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Mul<Quaternion<T>>>::Output
* operator.source§impl<T> Mul<Quaternion<T>> for UnitQuaternion<T>
impl<T> Mul<Quaternion<T>> for UnitQuaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
* operator.source§impl<T> Mul<T> for &UnitQuaternion<T>
impl<T> Mul<T> for &UnitQuaternion<T>
source§impl<T> Mul<T> for UnitQuaternion<T>
impl<T> Mul<T> for UnitQuaternion<T>
source§impl<T> Mul<UnitQuaternion<T>> for &Quaternion<T>
impl<T> Mul<UnitQuaternion<T>> for &Quaternion<T>
§type Output = <Quaternion<T> as Mul<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Mul<UnitQuaternion<T>>>::Output
* operator.source§impl<T> Mul<UnitQuaternion<T>> for &UnitQuaternion<T>
impl<T> Mul<UnitQuaternion<T>> for &UnitQuaternion<T>
source§impl<T> Mul<UnitQuaternion<T>> for Quaternion<T>
impl<T> Mul<UnitQuaternion<T>> for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
* operator.source§impl<T> Mul for UnitQuaternion<T>
impl<T> Mul for UnitQuaternion<T>
§type Output = UnitQuaternion<T>
type Output = UnitQuaternion<T>
* operator.source§impl<T> Neg for UnitQuaternion<T>where
T: Neg<Output = T>,
impl<T> Neg for UnitQuaternion<T>where
T: Neg<Output = T>,
source§impl<T> One for UnitQuaternion<T>
impl<T> One for UnitQuaternion<T>
source§impl<T: PartialEq> PartialEq for UnitQuaternion<T>
impl<T: PartialEq> PartialEq for UnitQuaternion<T>
source§fn eq(&self, other: &UnitQuaternion<T>) -> bool
fn eq(&self, other: &UnitQuaternion<T>) -> bool
self and other values to be equal, and is used
by ==.source§impl<T> Serialize for UnitQuaternion<T>where
T: Serialize,
impl<T> Serialize for UnitQuaternion<T>where
T: Serialize,
source§impl<T> Sub<&Quaternion<T>> for &UnitQuaternion<T>
impl<T> Sub<&Quaternion<T>> for &UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Sub<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Sub<Quaternion<T>>>::Output
- operator.source§impl<T> Sub<&Quaternion<T>> for UnitQuaternion<T>
impl<T> Sub<&Quaternion<T>> for UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Sub<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Sub<Quaternion<T>>>::Output
- operator.source§impl<T> Sub<&T> for &UnitQuaternion<T>
impl<T> Sub<&T> for &UnitQuaternion<T>
source§impl<T> Sub<&T> for UnitQuaternion<T>
impl<T> Sub<&T> for UnitQuaternion<T>
source§impl<T> Sub<&UnitQuaternion<T>> for &Quaternion<T>
impl<T> Sub<&UnitQuaternion<T>> for &Quaternion<T>
§type Output = <Quaternion<T> as Sub<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Sub<UnitQuaternion<T>>>::Output
- operator.source§impl<T> Sub<&UnitQuaternion<T>> for &UnitQuaternion<T>
impl<T> Sub<&UnitQuaternion<T>> for &UnitQuaternion<T>
source§impl<T> Sub<&UnitQuaternion<T>> for Quaternion<T>
impl<T> Sub<&UnitQuaternion<T>> for Quaternion<T>
§type Output = <Quaternion<T> as Sub<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Sub<UnitQuaternion<T>>>::Output
- operator.source§impl<T> Sub<&UnitQuaternion<T>> for UnitQuaternion<T>
impl<T> Sub<&UnitQuaternion<T>> for UnitQuaternion<T>
source§impl<T> Sub<Quaternion<T>> for &UnitQuaternion<T>
impl<T> Sub<Quaternion<T>> for &UnitQuaternion<T>
§type Output = <UnitQuaternion<T> as Sub<Quaternion<T>>>::Output
type Output = <UnitQuaternion<T> as Sub<Quaternion<T>>>::Output
- operator.source§impl<T> Sub<Quaternion<T>> for UnitQuaternion<T>
impl<T> Sub<Quaternion<T>> for UnitQuaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
- operator.source§impl<T> Sub<T> for &UnitQuaternion<T>
impl<T> Sub<T> for &UnitQuaternion<T>
source§impl<T> Sub<T> for UnitQuaternion<T>
impl<T> Sub<T> for UnitQuaternion<T>
source§impl<T> Sub<UnitQuaternion<T>> for &Quaternion<T>
impl<T> Sub<UnitQuaternion<T>> for &Quaternion<T>
§type Output = <Quaternion<T> as Sub<UnitQuaternion<T>>>::Output
type Output = <Quaternion<T> as Sub<UnitQuaternion<T>>>::Output
- operator.source§impl<T> Sub<UnitQuaternion<T>> for &UnitQuaternion<T>
impl<T> Sub<UnitQuaternion<T>> for &UnitQuaternion<T>
source§impl<T> Sub<UnitQuaternion<T>> for Quaternion<T>where
T: Sub<T, Output = T>,
impl<T> Sub<UnitQuaternion<T>> for Quaternion<T>where
T: Sub<T, Output = T>,
§type Output = Quaternion<T>
type Output = Quaternion<T>
- operator.source§impl<T> Sub for UnitQuaternion<T>
impl<T> Sub for UnitQuaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
- operator.impl<T: Copy> Copy for UnitQuaternion<T>
impl<T: Eq> Eq for UnitQuaternion<T>
impl<T> StructuralPartialEq for UnitQuaternion<T>
Auto Trait Implementations§
impl<T> Freeze for UnitQuaternion<T>where
T: Freeze,
impl<T> RefUnwindSafe for UnitQuaternion<T>where
T: RefUnwindSafe,
impl<T> Send for UnitQuaternion<T>where
T: Send,
impl<T> Sync for UnitQuaternion<T>where
T: Sync,
impl<T> Unpin for UnitQuaternion<T>where
T: Unpin,
impl<T> UnwindSafe for UnitQuaternion<T>where
T: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Copy,
impl<T> CloneToUninit for Twhere
T: Copy,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit)source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit)