num_primitive/float.rs
1use crate::{PrimitiveNumber, PrimitiveNumberRef, PrimitiveUnsigned};
2
3use core::cmp::Ordering;
4use core::f32::consts as f32_consts;
5use core::f64::consts as f64_consts;
6use core::num::FpCategory;
7
8struct SealedToken;
9
10/// Trait for all primitive [floating-point types], including the supertrait [`PrimitiveNumber`].
11///
12/// This encapsulates trait implementations, constants, and inherent methods that are common among
13/// the primitive floating-point types, [`f32`] and [`f64`]. Unstable types [`f16`] and [`f128`]
14/// will be added once they are stabilized.
15///
16/// See the corresponding items on the individual types for more documentation and examples.
17///
18/// This trait is sealed with a private trait to prevent downstream implementations, so we may
19/// continue to expand along with the standard library without worrying about breaking changes for
20/// implementors.
21///
22/// [floating-point types]: https://doc.rust-lang.org/reference/types/numeric.html#r-type.numeric.float
23///
24/// # Examples
25///
26/// This example requires the `std` feature for [`powi`][Self::powi] and [`sqrt`][Self::sqrt]:
27///
28#[cfg_attr(feature = "std", doc = "```")]
29#[cfg_attr(not(feature = "std"), doc = "```ignore")]
30/// use num_primitive::PrimitiveFloat;
31///
32/// // Euclidean distance, √(∑(aᵢ - bᵢ)²)
33/// fn distance<T: PrimitiveFloat>(a: &[T], b: &[T]) -> T {
34/// assert_eq!(a.len(), b.len());
35/// core::iter::zip(a, b).map(|(a, b)| (*a - b).powi(2)).sum::<T>().sqrt()
36/// }
37///
38/// assert_eq!(distance::<f32>(&[0., 0.], &[3., 4.]), 5.);
39/// assert_eq!(distance::<f64>(&[0., 1., 2.], &[1., 3., 0.]), 3.);
40/// ```
41///
42/// This example works without any features:
43///
44/// ```
45/// use num_primitive::PrimitiveFloat;
46///
47/// // Squared Euclidean distance, ∑(aᵢ - bᵢ)²
48/// fn distance_squared<T: PrimitiveFloat>(a: &[T], b: &[T]) -> T {
49/// assert_eq!(a.len(), b.len());
50/// core::iter::zip(a, b).map(|(a, b)| (*a - b)).map(|x| x * x).sum::<T>()
51/// }
52///
53/// assert_eq!(distance_squared::<f32>(&[0., 0.], &[3., 4.]), 25.);
54/// assert_eq!(distance_squared::<f64>(&[0., 1., 2.], &[1., 3., 0.]), 9.);
55/// ```
56pub trait PrimitiveFloat:
57 PrimitiveNumber
58 + PrimitiveFloatToInt<i8>
59 + PrimitiveFloatToInt<i16>
60 + PrimitiveFloatToInt<i32>
61 + PrimitiveFloatToInt<i64>
62 + PrimitiveFloatToInt<i128>
63 + PrimitiveFloatToInt<isize>
64 + PrimitiveFloatToInt<u8>
65 + PrimitiveFloatToInt<u16>
66 + PrimitiveFloatToInt<u32>
67 + PrimitiveFloatToInt<u64>
68 + PrimitiveFloatToInt<u128>
69 + PrimitiveFloatToInt<usize>
70 + core::convert::From<i8>
71 + core::convert::From<u8>
72 + core::ops::Neg<Output = Self>
73{
74 /// Approximate number of significant digits in base 10.
75 const DIGITS: u32;
76
77 /// Machine epsilon value.
78 const EPSILON: Self;
79
80 /// Infinity (∞).
81 const INFINITY: Self;
82
83 /// Number of significant digits in base 2.
84 const MANTISSA_DIGITS: u32;
85
86 /// Largest finite value.
87 const MAX: Self;
88
89 /// Maximum _x_ for which 10<sup>_x_</sup> is normal.
90 const MAX_10_EXP: i32;
91
92 /// Maximum possible power of 2 exponent.
93 const MAX_EXP: i32;
94
95 /// Smallest finite value.
96 const MIN: Self;
97
98 /// Minimum _x_ for which 10<sup>_x_</sup> is normal.
99 const MIN_10_EXP: i32;
100
101 /// One greater than the minimum possible normal power of 2 exponent.
102 const MIN_EXP: i32;
103
104 /// Smallest positive normal value.
105 const MIN_POSITIVE: Self;
106
107 /// Not a Number (NaN).
108 const NAN: Self;
109
110 /// Negative infinity (−∞).
111 const NEG_INFINITY: Self;
112
113 /// The radix or base of the internal representation.
114 const RADIX: u32;
115
116 // The following are not inherent consts, rather from `core::{float}::consts`.
117
118 /// Euler's number (e)
119 const E: Self;
120
121 /// 1/π
122 const FRAC_1_PI: Self;
123
124 /// 1/sqrt(2)
125 const FRAC_1_SQRT_2: Self;
126
127 /// 2/π
128 const FRAC_2_PI: Self;
129
130 /// 2/sqrt(π)
131 const FRAC_2_SQRT_PI: Self;
132
133 /// π/2
134 const FRAC_PI_2: Self;
135
136 /// π/3
137 const FRAC_PI_3: Self;
138
139 /// π/4
140 const FRAC_PI_4: Self;
141
142 /// π/6
143 const FRAC_PI_6: Self;
144
145 /// π/8
146 const FRAC_PI_8: Self;
147
148 /// ln(2)
149 const LN_2: Self;
150
151 /// ln(10)
152 const LN_10: Self;
153
154 /// log₂(10)
155 const LOG2_10: Self;
156
157 /// log₂(e)
158 const LOG2_E: Self;
159
160 /// log₁₀(2)
161 const LOG10_2: Self;
162
163 /// log₁₀(e)
164 const LOG10_E: Self;
165
166 /// Archimedes' constant (π)
167 const PI: Self;
168
169 /// sqrt(2)
170 const SQRT_2: Self;
171
172 /// The full circle constant (τ)
173 const TAU: Self;
174
175 /// An unsigned integer type used by methods [`from_bits`][Self::from_bits] and
176 /// [`to_bits`][Self::to_bits].
177 type Bits: PrimitiveUnsigned;
178
179 /// Computes the absolute value of `self`.
180 fn abs(self) -> Self;
181
182 /// Restrict a value to a certain interval unless it is NaN.
183 fn clamp(self, min: Self, max: Self) -> Self;
184
185 /// Returns the floating point category of the number. If only one property is going to be
186 /// tested, it is generally faster to use the specific predicate instead.
187 fn classify(self) -> FpCategory;
188
189 /// Returns a number composed of the magnitude of `self` and the sign of sign.
190 fn copysign(self, sign: Self) -> Self;
191
192 /// Raw transmutation from `Self::Bits`.
193 fn from_bits(value: Self::Bits) -> Self;
194
195 /// Returns `true` if this number is neither infinite nor NaN.
196 fn is_finite(self) -> bool;
197
198 /// Returns `true` if this value is positive infinity or negative infinity.
199 fn is_infinite(self) -> bool;
200
201 /// Returns `true` if this value is NaN.
202 fn is_nan(self) -> bool;
203
204 /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN.
205 fn is_normal(self) -> bool;
206
207 /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with negative sign bit
208 /// and negative infinity.
209 fn is_sign_negative(self) -> bool;
210
211 /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with positive sign bit
212 /// and positive infinity.
213 fn is_sign_positive(self) -> bool;
214
215 /// Returns `true` if the number is subnormal.
216 fn is_subnormal(self) -> bool;
217
218 /// Returns the maximum of the two numbers, ignoring NaN.
219 fn max(self, other: Self) -> Self;
220
221 /// Returns the minimum of the two numbers, ignoring NaN.
222 fn min(self, other: Self) -> Self;
223
224 /// Returns the greatest number less than `self`.
225 fn next_down(self) -> Self;
226
227 /// Returns the least number greater than `self`.
228 fn next_up(self) -> Self;
229
230 /// Takes the reciprocal (inverse) of a number, `1/x`.
231 fn recip(self) -> Self;
232
233 /// Returns a number that represents the sign of `self`.
234 fn signum(self) -> Self;
235
236 /// Raw transmutation to `Self::Bits`.
237 fn to_bits(self) -> Self::Bits;
238
239 /// Converts radians to degrees.
240 fn to_degrees(self) -> Self;
241
242 /// Converts degrees to radians.
243 fn to_radians(self) -> Self;
244
245 /// Returns the ordering between `self` and `other`.
246 fn total_cmp(&self, other: &Self) -> Ordering;
247
248 /// Rounds toward zero and converts to any primitive integer type, assuming that the value is
249 /// finite and fits in that type.
250 ///
251 /// # Safety
252 ///
253 /// The value must:
254 ///
255 /// * Not be `NaN`
256 /// * Not be infinite
257 /// * Be representable in the return type `Int`, after truncating off its fractional part
258 unsafe fn to_int_unchecked<Int>(self) -> Int
259 where
260 Self: PrimitiveFloatToInt<Int>;
261
262 /// Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN
263 /// if the number is outside the range [-1, 1].
264 #[cfg(feature = "std")]
265 fn acos(self) -> Self;
266
267 /// Inverse hyperbolic cosine function.
268 #[cfg(feature = "std")]
269 fn acosh(self) -> Self;
270
271 /// Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or
272 /// NaN if the number is outside the range [-1, 1].
273 #[cfg(feature = "std")]
274 fn asin(self) -> Self;
275
276 /// Inverse hyperbolic sine function.
277 #[cfg(feature = "std")]
278 fn asinh(self) -> Self;
279
280 /// Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
281 #[cfg(feature = "std")]
282 fn atan(self) -> Self;
283
284 /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
285 #[cfg(feature = "std")]
286 fn atan2(self, other: Self) -> Self;
287
288 /// Inverse hyperbolic tangent function.
289 #[cfg(feature = "std")]
290 fn atanh(self) -> Self;
291
292 /// Returns the cube root of a number.
293 #[cfg(feature = "std")]
294 fn cbrt(self) -> Self;
295
296 /// Returns the smallest integer greater than or equal to `self`.
297 #[cfg(feature = "std")]
298 fn ceil(self) -> Self;
299
300 /// Computes the cosine of a number (in radians).
301 #[cfg(feature = "std")]
302 fn cos(self) -> Self;
303
304 /// Hyperbolic cosine function.
305 #[cfg(feature = "std")]
306 fn cosh(self) -> Self;
307
308 /// Calculates Euclidean division, the matching method for `rem_euclid`.
309 #[cfg(feature = "std")]
310 fn div_euclid(self, rhs: Self) -> Self;
311
312 /// Returns `e^(self)`, (the exponential function).
313 #[cfg(feature = "std")]
314 fn exp(self) -> Self;
315
316 /// Returns `2^(self)`.
317 #[cfg(feature = "std")]
318 fn exp2(self) -> Self;
319
320 /// Returns `e^(self) - 1` in a way that is accurate even if the number is close to zero.
321 #[cfg(feature = "std")]
322 fn exp_m1(self) -> Self;
323
324 /// Returns the largest integer less than or equal to `self`.
325 #[cfg(feature = "std")]
326 fn floor(self) -> Self;
327
328 /// Returns the fractional part of `self`.
329 #[cfg(feature = "std")]
330 fn fract(self) -> Self;
331
332 /// Compute the distance between the origin and a point (`x`, `y`) on the Euclidean plane.
333 /// Equivalently, compute the length of the hypotenuse of a right-angle triangle with other
334 /// sides having length `x.abs()` and `y.abs()`.
335 #[cfg(feature = "std")]
336 fn hypot(self, other: Self) -> Self;
337
338 /// Returns the natural logarithm of the number.
339 #[cfg(feature = "std")]
340 fn ln(self) -> Self;
341
342 /// Returns `ln(1+n)` (natural logarithm) more accurately than if the operations were performed
343 /// separately.
344 #[cfg(feature = "std")]
345 fn ln_1p(self) -> Self;
346
347 /// Returns the logarithm of the number with respect to an arbitrary base.
348 #[cfg(feature = "std")]
349 fn log(self, base: Self) -> Self;
350
351 /// Returns the base 2 logarithm of the number.
352 #[cfg(feature = "std")]
353 fn log2(self) -> Self;
354
355 /// Returns the base 10 logarithm of the number.
356 #[cfg(feature = "std")]
357 fn log10(self) -> Self;
358
359 /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error, yielding a more
360 /// accurate result than an unfused multiply-add.
361 #[cfg(feature = "std")]
362 fn mul_add(self, a: Self, b: Self) -> Self;
363
364 /// Raises a number to a floating point power.
365 #[cfg(feature = "std")]
366 fn powf(self, n: Self) -> Self;
367
368 /// Raises a number to an integer power.
369 #[cfg(feature = "std")]
370 fn powi(self, n: i32) -> Self;
371
372 /// Calculates the least nonnegative remainder of `self (mod rhs)`.
373 #[cfg(feature = "std")]
374 fn rem_euclid(self, rhs: Self) -> Self;
375
376 /// Returns the nearest integer to `self`. If a value is half-way between two integers, round
377 /// away from `0.0`.
378 #[cfg(feature = "std")]
379 fn round(self) -> Self;
380
381 /// Returns the nearest integer to a number. Rounds half-way cases to the number with an even
382 /// least significant digit.
383 #[cfg(feature = "std")]
384 fn round_ties_even(self) -> Self;
385
386 /// Computes the sine of a number (in radians).
387 #[cfg(feature = "std")]
388 fn sin(self) -> Self;
389
390 /// Simultaneously computes the sine and cosine of the number, `x`. Returns `(sin(x), cos(x))`.
391 #[cfg(feature = "std")]
392 fn sin_cos(self) -> (Self, Self);
393
394 /// Hyperbolic sine function.
395 #[cfg(feature = "std")]
396 fn sinh(self) -> Self;
397
398 /// Returns the square root of a number.
399 #[cfg(feature = "std")]
400 fn sqrt(self) -> Self;
401
402 /// Computes the tangent of a number (in radians).
403 #[cfg(feature = "std")]
404 fn tan(self) -> Self;
405
406 /// Hyperbolic tangent function.
407 #[cfg(feature = "std")]
408 fn tanh(self) -> Self;
409
410 /// Returns the integer part of `self`. This means that non-integer numbers are always
411 /// truncated towards zero.
412 #[cfg(feature = "std")]
413 fn trunc(self) -> Self;
414}
415
416/// Trait for references to primitive floating-point types ([`PrimitiveFloat`]).
417///
418/// This enables traits like the standard operators in generic code,
419/// e.g. `where &T: PrimitiveFloatRef<T>`.
420pub trait PrimitiveFloatRef<T>: PrimitiveNumberRef<T> + core::ops::Neg<Output = T> {}
421
422/// Trait for conversions supported by [`PrimitiveFloat::to_int_unchecked`].
423///
424/// This is effectively the same as the unstable [`core::convert::FloatToInt`], implemented for all
425/// combinations of [`PrimitiveFloat`] and [`PrimitiveInteger`][crate::PrimitiveInteger].
426///
427/// # Examples
428///
429/// `PrimitiveFloatToInt<{integer}>` is a supertrait of [`PrimitiveFloat`] for all primitive
430/// integers, so you do not need to use this trait directly with concrete integer types.
431///
432/// ```
433/// use num_primitive::PrimitiveFloat;
434///
435/// fn pi<Float: PrimitiveFloat>() -> i32 {
436/// // SAFETY: π is finite, and truncated to 3 fits any int
437/// unsafe { Float::PI.to_int_unchecked() }
438/// }
439///
440/// assert_eq!(pi::<f32>(), 3i32);
441/// assert_eq!(pi::<f64>(), 3i32);
442/// ```
443///
444/// However, if the integer type is also generic, an explicit type constraint is needed.
445///
446/// ```
447/// use num_primitive::{PrimitiveFloat, PrimitiveFloatToInt};
448///
449/// fn tau<Float, Int>() -> Int
450/// where
451/// Float: PrimitiveFloat + PrimitiveFloatToInt<Int>,
452/// {
453/// // SAFETY: τ is finite, and truncated to 6 fits any int
454/// unsafe { Float::TAU.to_int_unchecked() }
455/// }
456///
457/// assert_eq!(tau::<f32, i64>(), 6i64);
458/// assert_eq!(tau::<f64, u8>(), 6u8);
459/// ```
460///
461pub trait PrimitiveFloatToInt<Int> {
462 #[doc(hidden)]
463 #[expect(private_interfaces)]
464 unsafe fn __to_int_unchecked(x: Self, _: SealedToken) -> Int;
465}
466
467macro_rules! impl_float {
468 ($Float:ident, $consts:ident, $Bits:ty) => {
469 impl PrimitiveFloat for $Float {
470 use_consts!(Self::{
471 DIGITS: u32,
472 EPSILON: Self,
473 INFINITY: Self,
474 MANTISSA_DIGITS: u32,
475 MAX: Self,
476 MAX_10_EXP: i32,
477 MAX_EXP: i32,
478 MIN: Self,
479 MIN_10_EXP: i32,
480 MIN_EXP: i32,
481 MIN_POSITIVE: Self,
482 NAN: Self,
483 NEG_INFINITY: Self,
484 RADIX: u32,
485 });
486
487 use_consts!($consts::{
488 E: Self,
489 FRAC_1_PI: Self,
490 FRAC_1_SQRT_2: Self,
491 FRAC_2_PI: Self,
492 FRAC_2_SQRT_PI: Self,
493 FRAC_PI_2: Self,
494 FRAC_PI_3: Self,
495 FRAC_PI_4: Self,
496 FRAC_PI_6: Self,
497 FRAC_PI_8: Self,
498 LN_2: Self,
499 LN_10: Self,
500 LOG2_10: Self,
501 LOG2_E: Self,
502 LOG10_2: Self,
503 LOG10_E: Self,
504 PI: Self,
505 SQRT_2: Self,
506 TAU: Self,
507 });
508
509 type Bits = $Bits;
510
511 forward! {
512 fn from_bits(value: Self::Bits) -> Self;
513 }
514 forward! {
515 fn abs(self) -> Self;
516 fn clamp(self, min: Self, max: Self) -> Self;
517 fn classify(self) -> FpCategory;
518 fn copysign(self, sign: Self) -> Self;
519 fn is_finite(self) -> bool;
520 fn is_infinite(self) -> bool;
521 fn is_nan(self) -> bool;
522 fn is_normal(self) -> bool;
523 fn is_sign_negative(self) -> bool;
524 fn is_sign_positive(self) -> bool;
525 fn is_subnormal(self) -> bool;
526 fn max(self, other: Self) -> Self;
527 fn min(self, other: Self) -> Self;
528 fn next_down(self) -> Self;
529 fn next_up(self) -> Self;
530 fn recip(self) -> Self;
531 fn signum(self) -> Self;
532 fn to_bits(self) -> Self::Bits;
533 fn to_degrees(self) -> Self;
534 fn to_radians(self) -> Self;
535 }
536 forward! {
537 fn total_cmp(&self, other: &Self) -> Ordering;
538 }
539
540 // NOTE: This is still effectively forwarding, but we need some indirection
541 // to avoid naming the unstable `core::convert::FloatToInt`.
542 #[doc = forward_doc!(to_int_unchecked)]
543 #[inline]
544 unsafe fn to_int_unchecked<Int>(self) -> Int
545 where
546 Self: PrimitiveFloatToInt<Int>,
547 {
548 // SAFETY: we're just passing through here!
549 unsafe { <Self as PrimitiveFloatToInt<Int>>::__to_int_unchecked(self, SealedToken) }
550 }
551
552 // --- std-only methods ---
553
554 #[cfg(feature = "std")]
555 forward! {
556 fn acos(self) -> Self;
557 fn acosh(self) -> Self;
558 fn asin(self) -> Self;
559 fn asinh(self) -> Self;
560 fn atan(self) -> Self;
561 fn atan2(self, other: Self) -> Self;
562 fn atanh(self) -> Self;
563 fn cbrt(self) -> Self;
564 fn ceil(self) -> Self;
565 fn cos(self) -> Self;
566 fn cosh(self) -> Self;
567 fn div_euclid(self, rhs: Self) -> Self;
568 fn exp(self) -> Self;
569 fn exp2(self) -> Self;
570 fn exp_m1(self) -> Self;
571 fn floor(self) -> Self;
572 fn fract(self) -> Self;
573 fn hypot(self, other: Self) -> Self;
574 fn ln(self) -> Self;
575 fn ln_1p(self) -> Self;
576 fn log(self, base: Self) -> Self;
577 fn log2(self) -> Self;
578 fn log10(self) -> Self;
579 fn mul_add(self, a: Self, b: Self) -> Self;
580 fn powf(self, n: Self) -> Self;
581 fn powi(self, n: i32) -> Self;
582 fn rem_euclid(self, rhs: Self) -> Self;
583 fn round(self) -> Self;
584 fn round_ties_even(self) -> Self;
585 fn sin(self) -> Self;
586 fn sin_cos(self) -> (Self, Self);
587 fn sinh(self) -> Self;
588 fn sqrt(self) -> Self;
589 fn tan(self) -> Self;
590 fn tanh(self) -> Self;
591 fn trunc(self) -> Self;
592 }
593 }
594
595 impl PrimitiveFloatRef<$Float> for &$Float {}
596 }
597}
598
599impl_float!(f32, f32_consts, u32);
600impl_float!(f64, f64_consts, u64);
601
602// NOTE: the extra module level here is to make sure that `PrimitiveFloat` isn't in scope, so we
603// can be sure that we're not recursing. Elsewhere we rely on the normal `unconditional-recursion`
604// lint, but that doesn't see through this level of trait indirection.
605mod internal {
606 macro_rules! impl_float_to_int {
607 ($Float:ty => $($Int:ty),+) => {
608 $(
609 impl super::PrimitiveFloatToInt<$Int> for $Float {
610 #[inline]
611 #[expect(private_interfaces)]
612 unsafe fn __to_int_unchecked(x: Self, _: super::SealedToken) -> $Int {
613 // SAFETY: we're just passing through here!
614 unsafe { <$Float>::to_int_unchecked::<$Int>(x) }
615 }
616 }
617 )+
618 }
619 }
620
621 impl_float_to_int!(f32 => u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize);
622 impl_float_to_int!(f64 => u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize);
623}