num_primitive/
float.rs

1use crate::{PrimitiveNumber, PrimitiveNumberRef, PrimitiveUnsigned};
2
3use core::cmp::Ordering;
4use core::f32::consts as f32_consts;
5use core::f64::consts as f64_consts;
6use core::num::FpCategory;
7
8struct SealedToken;
9
10/// Trait for all primitive [floating-point types], including the supertrait [`PrimitiveNumber`].
11///
12/// This encapsulates trait implementations, constants, and inherent methods that are common among
13/// the primitive floating-point types, [`f32`] and [`f64`]. Unstable types [`f16`] and [`f128`]
14/// will be added once they are stabilized.
15///
16/// See the corresponding items on the individual types for more documentation and examples.
17///
18/// This trait is sealed with a private trait to prevent downstream implementations, so we may
19/// continue to expand along with the standard library without worrying about breaking changes for
20/// implementors.
21///
22/// [floating-point types]: https://doc.rust-lang.org/reference/types/numeric.html#r-type.numeric.float
23///
24/// # Examples
25///
26/// This example requires the `std` feature for [`powi`][Self::powi] and [`sqrt`][Self::sqrt]:
27///
28#[cfg_attr(feature = "std", doc = "```")]
29#[cfg_attr(not(feature = "std"), doc = "```ignore")]
30/// use num_primitive::PrimitiveFloat;
31///
32/// // Euclidean distance, √(∑(aᵢ - bᵢ)²)
33/// fn distance<T: PrimitiveFloat>(a: &[T], b: &[T]) -> T {
34///     assert_eq!(a.len(), b.len());
35///     core::iter::zip(a, b).map(|(a, b)| (*a - b).powi(2)).sum::<T>().sqrt()
36/// }
37///
38/// assert_eq!(distance::<f32>(&[0., 0.], &[3., 4.]), 5.);
39/// assert_eq!(distance::<f64>(&[0., 1., 2.], &[1., 3., 0.]), 3.);
40/// ```
41///
42/// This example works without any features:
43///
44/// ```
45/// use num_primitive::PrimitiveFloat;
46///
47/// // Squared Euclidean distance, ∑(aᵢ - bᵢ)²
48/// fn distance_squared<T: PrimitiveFloat>(a: &[T], b: &[T]) -> T {
49///     assert_eq!(a.len(), b.len());
50///     core::iter::zip(a, b).map(|(a, b)| (*a - b)).map(|x| x * x).sum::<T>()
51/// }
52///
53/// assert_eq!(distance_squared::<f32>(&[0., 0.], &[3., 4.]), 25.);
54/// assert_eq!(distance_squared::<f64>(&[0., 1., 2.], &[1., 3., 0.]), 9.);
55/// ```
56pub trait PrimitiveFloat:
57    PrimitiveNumber
58    + PrimitiveFloatToInt<i8>
59    + PrimitiveFloatToInt<i16>
60    + PrimitiveFloatToInt<i32>
61    + PrimitiveFloatToInt<i64>
62    + PrimitiveFloatToInt<i128>
63    + PrimitiveFloatToInt<isize>
64    + PrimitiveFloatToInt<u8>
65    + PrimitiveFloatToInt<u16>
66    + PrimitiveFloatToInt<u32>
67    + PrimitiveFloatToInt<u64>
68    + PrimitiveFloatToInt<u128>
69    + PrimitiveFloatToInt<usize>
70    + core::convert::From<i8>
71    + core::convert::From<u8>
72    + core::ops::Neg<Output = Self>
73{
74    /// Approximate number of significant digits in base 10.
75    const DIGITS: u32;
76
77    /// Machine epsilon value.
78    const EPSILON: Self;
79
80    /// Infinity (∞).
81    const INFINITY: Self;
82
83    /// Number of significant digits in base 2.
84    const MANTISSA_DIGITS: u32;
85
86    /// Largest finite value.
87    const MAX: Self;
88
89    /// Maximum _x_ for which 10<sup>_x_</sup> is normal.
90    const MAX_10_EXP: i32;
91
92    /// Maximum possible power of 2 exponent.
93    const MAX_EXP: i32;
94
95    /// Smallest finite value.
96    const MIN: Self;
97
98    /// Minimum _x_ for which 10<sup>_x_</sup> is normal.
99    const MIN_10_EXP: i32;
100
101    /// One greater than the minimum possible normal power of 2 exponent.
102    const MIN_EXP: i32;
103
104    /// Smallest positive normal value.
105    const MIN_POSITIVE: Self;
106
107    /// Not a Number (NaN).
108    const NAN: Self;
109
110    /// Negative infinity (−∞).
111    const NEG_INFINITY: Self;
112
113    /// The radix or base of the internal representation.
114    const RADIX: u32;
115
116    // The following are not inherent consts, rather from `core::{float}::consts`.
117
118    /// Euler's number (e)
119    const E: Self;
120
121    /// 1/π
122    const FRAC_1_PI: Self;
123
124    /// 1/sqrt(2)
125    const FRAC_1_SQRT_2: Self;
126
127    /// 2/π
128    const FRAC_2_PI: Self;
129
130    /// 2/sqrt(π)
131    const FRAC_2_SQRT_PI: Self;
132
133    /// π/2
134    const FRAC_PI_2: Self;
135
136    /// π/3
137    const FRAC_PI_3: Self;
138
139    /// π/4
140    const FRAC_PI_4: Self;
141
142    /// π/6
143    const FRAC_PI_6: Self;
144
145    /// π/8
146    const FRAC_PI_8: Self;
147
148    /// ln(2)
149    const LN_2: Self;
150
151    /// ln(10)
152    const LN_10: Self;
153
154    /// log₂(10)
155    const LOG2_10: Self;
156
157    /// log₂(e)
158    const LOG2_E: Self;
159
160    /// log₁₀(2)
161    const LOG10_2: Self;
162
163    /// log₁₀(e)
164    const LOG10_E: Self;
165
166    /// Archimedes' constant (π)
167    const PI: Self;
168
169    /// sqrt(2)
170    const SQRT_2: Self;
171
172    /// The full circle constant (τ)
173    const TAU: Self;
174
175    /// An unsigned integer type used by methods [`from_bits`][Self::from_bits] and
176    /// [`to_bits`][Self::to_bits].
177    type Bits: PrimitiveUnsigned;
178
179    /// Computes the absolute value of `self`.
180    fn abs(self) -> Self;
181
182    /// Restrict a value to a certain interval unless it is NaN.
183    fn clamp(self, min: Self, max: Self) -> Self;
184
185    /// Returns the floating point category of the number. If only one property is going to be
186    /// tested, it is generally faster to use the specific predicate instead.
187    fn classify(self) -> FpCategory;
188
189    /// Returns a number composed of the magnitude of `self` and the sign of sign.
190    fn copysign(self, sign: Self) -> Self;
191
192    /// Raw transmutation from `Self::Bits`.
193    fn from_bits(value: Self::Bits) -> Self;
194
195    /// Returns `true` if this number is neither infinite nor NaN.
196    fn is_finite(self) -> bool;
197
198    /// Returns `true` if this value is positive infinity or negative infinity.
199    fn is_infinite(self) -> bool;
200
201    /// Returns `true` if this value is NaN.
202    fn is_nan(self) -> bool;
203
204    /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN.
205    fn is_normal(self) -> bool;
206
207    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with negative sign bit
208    /// and negative infinity.
209    fn is_sign_negative(self) -> bool;
210
211    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with positive sign bit
212    /// and positive infinity.
213    fn is_sign_positive(self) -> bool;
214
215    /// Returns `true` if the number is subnormal.
216    fn is_subnormal(self) -> bool;
217
218    /// Returns the maximum of the two numbers, ignoring NaN.
219    fn max(self, other: Self) -> Self;
220
221    /// Calculates the middle point of `self` and `other`.
222    fn midpoint(self, other: Self) -> Self;
223
224    /// Returns the minimum of the two numbers, ignoring NaN.
225    fn min(self, other: Self) -> Self;
226
227    /// Takes the reciprocal (inverse) of a number, `1/x`.
228    fn recip(self) -> Self;
229
230    /// Returns a number that represents the sign of `self`.
231    fn signum(self) -> Self;
232
233    /// Raw transmutation to `Self::Bits`.
234    fn to_bits(self) -> Self::Bits;
235
236    /// Converts radians to degrees.
237    fn to_degrees(self) -> Self;
238
239    /// Converts degrees to radians.
240    fn to_radians(self) -> Self;
241
242    /// Returns the ordering between `self` and `other`.
243    fn total_cmp(&self, other: &Self) -> Ordering;
244
245    /// Rounds toward zero and converts to any primitive integer type, assuming that the value is
246    /// finite and fits in that type.
247    ///
248    /// # Safety
249    ///
250    /// The value must:
251    ///
252    /// * Not be `NaN`
253    /// * Not be infinite
254    /// * Be representable in the return type `Int`, after truncating off its fractional part
255    unsafe fn to_int_unchecked<Int>(self) -> Int
256    where
257        Self: PrimitiveFloatToInt<Int>;
258
259    /// Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN
260    /// if the number is outside the range [-1, 1].
261    #[cfg(feature = "std")]
262    fn acos(self) -> Self;
263
264    /// Inverse hyperbolic cosine function.
265    #[cfg(feature = "std")]
266    fn acosh(self) -> Self;
267
268    /// Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or
269    /// NaN if the number is outside the range [-1, 1].
270    #[cfg(feature = "std")]
271    fn asin(self) -> Self;
272
273    /// Inverse hyperbolic sine function.
274    #[cfg(feature = "std")]
275    fn asinh(self) -> Self;
276
277    /// Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
278    #[cfg(feature = "std")]
279    fn atan(self) -> Self;
280
281    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
282    #[cfg(feature = "std")]
283    fn atan2(self, other: Self) -> Self;
284
285    /// Inverse hyperbolic tangent function.
286    #[cfg(feature = "std")]
287    fn atanh(self) -> Self;
288
289    /// Returns the cube root of a number.
290    #[cfg(feature = "std")]
291    fn cbrt(self) -> Self;
292
293    /// Returns the smallest integer greater than or equal to `self`.
294    #[cfg(feature = "std")]
295    fn ceil(self) -> Self;
296
297    /// Computes the cosine of a number (in radians).
298    #[cfg(feature = "std")]
299    fn cos(self) -> Self;
300
301    /// Hyperbolic cosine function.
302    #[cfg(feature = "std")]
303    fn cosh(self) -> Self;
304
305    /// Calculates Euclidean division, the matching method for `rem_euclid`.
306    #[cfg(feature = "std")]
307    fn div_euclid(self, rhs: Self) -> Self;
308
309    /// Returns `e^(self)`, (the exponential function).
310    #[cfg(feature = "std")]
311    fn exp(self) -> Self;
312
313    /// Returns `2^(self)`.
314    #[cfg(feature = "std")]
315    fn exp2(self) -> Self;
316
317    /// Returns `e^(self) - 1` in a way that is accurate even if the number is close to zero.
318    #[cfg(feature = "std")]
319    fn exp_m1(self) -> Self;
320
321    /// Returns the largest integer less than or equal to `self`.
322    #[cfg(feature = "std")]
323    fn floor(self) -> Self;
324
325    /// Returns the fractional part of `self`.
326    #[cfg(feature = "std")]
327    fn fract(self) -> Self;
328
329    /// Compute the distance between the origin and a point (`x`, `y`) on the Euclidean plane.
330    /// Equivalently, compute the length of the hypotenuse of a right-angle triangle with other
331    /// sides having length `x.abs()` and `y.abs()`.
332    #[cfg(feature = "std")]
333    fn hypot(self, other: Self) -> Self;
334
335    /// Returns the natural logarithm of the number.
336    #[cfg(feature = "std")]
337    fn ln(self) -> Self;
338
339    /// Returns `ln(1+n)` (natural logarithm) more accurately than if the operations were performed
340    /// separately.
341    #[cfg(feature = "std")]
342    fn ln_1p(self) -> Self;
343
344    /// Returns the logarithm of the number with respect to an arbitrary base.
345    #[cfg(feature = "std")]
346    fn log(self, base: Self) -> Self;
347
348    /// Returns the base 2 logarithm of the number.
349    #[cfg(feature = "std")]
350    fn log2(self) -> Self;
351
352    /// Returns the base 10 logarithm of the number.
353    #[cfg(feature = "std")]
354    fn log10(self) -> Self;
355
356    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error, yielding a more
357    /// accurate result than an unfused multiply-add.
358    #[cfg(feature = "std")]
359    fn mul_add(self, a: Self, b: Self) -> Self;
360
361    /// Raises a number to a floating point power.
362    #[cfg(feature = "std")]
363    fn powf(self, n: Self) -> Self;
364
365    /// Raises a number to an integer power.
366    #[cfg(feature = "std")]
367    fn powi(self, n: i32) -> Self;
368
369    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
370    #[cfg(feature = "std")]
371    fn rem_euclid(self, rhs: Self) -> Self;
372
373    /// Returns the nearest integer to `self`. If a value is half-way between two integers, round
374    /// away from `0.0`.
375    #[cfg(feature = "std")]
376    fn round(self) -> Self;
377
378    /// Returns the nearest integer to a number. Rounds half-way cases to the number with an even
379    /// least significant digit.
380    #[cfg(feature = "std")]
381    fn round_ties_even(self) -> Self;
382
383    /// Computes the sine of a number (in radians).
384    #[cfg(feature = "std")]
385    fn sin(self) -> Self;
386
387    /// Simultaneously computes the sine and cosine of the number, `x`. Returns `(sin(x), cos(x))`.
388    #[cfg(feature = "std")]
389    fn sin_cos(self) -> (Self, Self);
390
391    /// Hyperbolic sine function.
392    #[cfg(feature = "std")]
393    fn sinh(self) -> Self;
394
395    /// Returns the square root of a number.
396    #[cfg(feature = "std")]
397    fn sqrt(self) -> Self;
398
399    /// Computes the tangent of a number (in radians).
400    #[cfg(feature = "std")]
401    fn tan(self) -> Self;
402
403    /// Hyperbolic tangent function.
404    #[cfg(feature = "std")]
405    fn tanh(self) -> Self;
406
407    /// Returns the integer part of `self`. This means that non-integer numbers are always
408    /// truncated towards zero.
409    #[cfg(feature = "std")]
410    fn trunc(self) -> Self;
411}
412
413/// Trait for references to primitive floating-point types ([`PrimitiveFloat`]).
414///
415/// This enables traits like the standard operators in generic code,
416/// e.g. `where &T: PrimitiveFloatRef<T>`.
417pub trait PrimitiveFloatRef<T>: PrimitiveNumberRef<T> + core::ops::Neg<Output = T> {}
418
419/// Trait for conversions supported by [`PrimitiveFloat::to_int_unchecked`].
420///
421/// This is effectively the same as the unstable [`core::convert::FloatToInt`], implemented for all
422/// combinations of [`PrimitiveFloat`] and [`PrimitiveInteger`][crate::PrimitiveInteger].
423///
424/// # Examples
425///
426/// `PrimitiveFloatToInt<{integer}>` is a supertrait of [`PrimitiveFloat`] for all primitive
427/// integers, so you do not need to use this trait directly with concrete integer types.
428///
429/// ```
430/// use num_primitive::PrimitiveFloat;
431///
432/// fn pi<Float: PrimitiveFloat>() -> i32 {
433///     // SAFETY: π is finite, and truncated to 3 fits any int
434///     unsafe { Float::PI.to_int_unchecked() }
435/// }
436///
437/// assert_eq!(pi::<f32>(), 3i32);
438/// assert_eq!(pi::<f64>(), 3i32);
439/// ```
440///
441/// However, if the integer type is also generic, an explicit type constraint is needed.
442///
443/// ```
444/// use num_primitive::{PrimitiveFloat, PrimitiveFloatToInt};
445///
446/// fn tau<Float, Int>() -> Int
447/// where
448///     Float: PrimitiveFloat + PrimitiveFloatToInt<Int>,
449/// {
450///     // SAFETY: τ is finite, and truncated to 6 fits any int
451///     unsafe { Float::TAU.to_int_unchecked() }
452/// }
453///
454/// assert_eq!(tau::<f32, i64>(), 6i64);
455/// assert_eq!(tau::<f64, u8>(), 6u8);
456/// ```
457///
458pub trait PrimitiveFloatToInt<Int> {
459    #[doc(hidden)]
460    #[expect(private_interfaces)]
461    unsafe fn __to_int_unchecked(x: Self, _: SealedToken) -> Int;
462}
463
464macro_rules! impl_float {
465    ($Float:ident, $consts:ident, $Bits:ty) => {
466        impl PrimitiveFloat for $Float {
467            use_consts!(Self::{
468                DIGITS: u32,
469                EPSILON: Self,
470                INFINITY: Self,
471                MANTISSA_DIGITS: u32,
472                MAX: Self,
473                MAX_10_EXP: i32,
474                MAX_EXP: i32,
475                MIN: Self,
476                MIN_10_EXP: i32,
477                MIN_EXP: i32,
478                MIN_POSITIVE: Self,
479                NAN: Self,
480                NEG_INFINITY: Self,
481                RADIX: u32,
482            });
483
484            use_consts!($consts::{
485                E: Self,
486                FRAC_1_PI: Self,
487                FRAC_1_SQRT_2: Self,
488                FRAC_2_PI: Self,
489                FRAC_2_SQRT_PI: Self,
490                FRAC_PI_2: Self,
491                FRAC_PI_3: Self,
492                FRAC_PI_4: Self,
493                FRAC_PI_6: Self,
494                FRAC_PI_8: Self,
495                LN_2: Self,
496                LN_10: Self,
497                LOG2_10: Self,
498                LOG2_E: Self,
499                LOG10_2: Self,
500                LOG10_E: Self,
501                PI: Self,
502                SQRT_2: Self,
503                TAU: Self,
504            });
505
506            type Bits = $Bits;
507
508            forward! {
509                fn from_bits(value: Self::Bits) -> Self;
510            }
511            forward! {
512                fn abs(self) -> Self;
513                fn clamp(self, min: Self, max: Self) -> Self;
514                fn classify(self) -> FpCategory;
515                fn copysign(self, sign: Self) -> Self;
516                fn is_finite(self) -> bool;
517                fn is_infinite(self) -> bool;
518                fn is_nan(self) -> bool;
519                fn is_normal(self) -> bool;
520                fn is_sign_negative(self) -> bool;
521                fn is_sign_positive(self) -> bool;
522                fn is_subnormal(self) -> bool;
523                fn max(self, other: Self) -> Self;
524                fn midpoint(self, other: Self) -> Self;
525                fn min(self, other: Self) -> Self;
526                fn recip(self) -> Self;
527                fn signum(self) -> Self;
528                fn to_bits(self) -> Self::Bits;
529                fn to_degrees(self) -> Self;
530                fn to_radians(self) -> Self;
531            }
532            forward! {
533                fn total_cmp(&self, other: &Self) -> Ordering;
534            }
535
536            // NOTE: This is still effectively forwarding, but we need some indirection
537            // to avoid naming the unstable `core::convert::FloatToInt`.
538            #[doc = forward_doc!(to_int_unchecked)]
539            #[inline]
540            unsafe fn to_int_unchecked<Int>(self) -> Int
541            where
542                Self: PrimitiveFloatToInt<Int>,
543            {
544                // SAFETY: we're just passing through here!
545                unsafe { <Self as PrimitiveFloatToInt<Int>>::__to_int_unchecked(self, SealedToken) }
546            }
547
548            // --- std-only methods ---
549
550            #[cfg(feature = "std")]
551            forward! {
552                fn acos(self) -> Self;
553                fn acosh(self) -> Self;
554                fn asin(self) -> Self;
555                fn asinh(self) -> Self;
556                fn atan(self) -> Self;
557                fn atan2(self, other: Self) -> Self;
558                fn atanh(self) -> Self;
559                fn cbrt(self) -> Self;
560                fn ceil(self) -> Self;
561                fn cos(self) -> Self;
562                fn cosh(self) -> Self;
563                fn div_euclid(self, rhs: Self) -> Self;
564                fn exp(self) -> Self;
565                fn exp2(self) -> Self;
566                fn exp_m1(self) -> Self;
567                fn floor(self) -> Self;
568                fn fract(self) -> Self;
569                fn hypot(self, other: Self) -> Self;
570                fn ln(self) -> Self;
571                fn ln_1p(self) -> Self;
572                fn log(self, base: Self) -> Self;
573                fn log2(self) -> Self;
574                fn log10(self) -> Self;
575                fn mul_add(self, a: Self, b: Self) -> Self;
576                fn powf(self, n: Self) -> Self;
577                fn powi(self, n: i32) -> Self;
578                fn rem_euclid(self, rhs: Self) -> Self;
579                fn round(self) -> Self;
580                fn round_ties_even(self) -> Self;
581                fn sin(self) -> Self;
582                fn sin_cos(self) -> (Self, Self);
583                fn sinh(self) -> Self;
584                fn sqrt(self) -> Self;
585                fn tan(self) -> Self;
586                fn tanh(self) -> Self;
587                fn trunc(self) -> Self;
588            }
589        }
590
591        impl PrimitiveFloatRef<$Float> for &$Float {}
592    }
593}
594
595impl_float!(f32, f32_consts, u32);
596impl_float!(f64, f64_consts, u64);
597
598// NOTE: the extra module level here is to make sure that `PrimitiveFloat` isn't in scope, so we
599// can be sure that we're not recursing. Elsewhere we rely on the normal `unconditional-recursion`
600// lint, but that doesn't see through this level of trait indirection.
601mod internal {
602    macro_rules! impl_float_to_int {
603        ($Float:ty => $($Int:ty),+) => {
604            $(
605                impl super::PrimitiveFloatToInt<$Int> for $Float {
606                    #[inline]
607                    #[expect(private_interfaces)]
608                    unsafe fn __to_int_unchecked(x: Self, _: super::SealedToken) -> $Int {
609                        // SAFETY: we're just passing through here!
610                        unsafe { <$Float>::to_int_unchecked::<$Int>(x) }
611                    }
612                }
613            )+
614        }
615    }
616
617    impl_float_to_int!(f32 => u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize);
618    impl_float_to_int!(f64 => u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize);
619}