1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
use crate::{PrimalityTestConfig, RandPrime};
use crate::mint::Mint;
use rand::Rng;
#[cfg(feature = "num-bigint")]
use num_bigint::{BigUint, RandBigInt};
use crate::nt_funcs::{is_prime64, is_prime, next_prime};

macro_rules! impl_randprime_prim {
    ($($T:ty)*) => {$(
        impl<R: Rng> RandPrime<$T> for R {
            #[inline]
            fn gen_prime(&mut self, bit_size: usize, _: Option<PrimalityTestConfig>) -> $T {
                if bit_size > (<$T>::BITS as usize) {
                    panic!("The given bit size limit exceeded the capacity of the integer type!")
                }

                loop {
                    let t: $T = self.gen();
                    let t = (t >> (<$T>::BITS - bit_size as u32)) | 1; // filter even numbers
                    if is_prime64(t as u64) {
                        break t
                    } else if let Some(p) = next_prime(&t, None) {
                        // deterministic primality test will be used for integers under u64
                        break p
                    }
                }
            }

            #[inline]
            fn gen_prime_exact(&mut self, bit_size: usize, _: Option<PrimalityTestConfig>) -> $T {
                if bit_size > (<$T>::BITS as usize) {
                    panic!("The given bit size limit exceeded the capacity of the integer type!")
                }

                loop {
                    let t: $T = self.gen();
                    let t = (t >> (<$T>::BITS - bit_size as u32)) | 1 | (1 << (bit_size - 1));
                    if is_prime64(t as u64) {
                        break t
                    } else if let Some(p) = next_prime(&t, None) {
                        // deterministic primality test will be used for integers under u64
                        break p
                    }
                }
            }

            #[inline]
            fn gen_safe_prime(&mut self, bit_size: usize) -> $T {
                loop {
                    // deterministic primality test will be used for integers under u64
                    let p = self.gen_prime(bit_size, None);

                    // test (p-1)/2
                    if is_prime64((p >> 1) as u64) {
                        break p
                    }
                    // test 2p+1
                    if let Some(p2) = p.checked_mul(2).and_then(|v| v.checked_add(1)) {
                        if is_prime64(p2 as u64) {
                            break p2
                        }
                    }
                }
            }

            #[inline]
            fn gen_safe_prime_exact(&mut self, bit_size: usize) -> $T {
                loop {
                    // deterministic primality test will be used for integers under u64
                    let p = self.gen_prime_exact(bit_size, None);

                    // test (p-1)/2
                    if is_prime64((p >> 1) as u64) {
                        break p
                    }
                    // test 2p+1
                    if let Some(p2) = p.checked_mul(2).and_then(|v| v.checked_add(1)) {
                        if is_prime64(p2 as u64) {
                            break p2
                        }
                    }
                }
            }
        }
    )*}
}
impl_randprime_prim!(u8 u16 u32 u64);

impl<R: Rng> RandPrime<u128> for R {
    #[inline]
    fn gen_prime(&mut self, bit_size: usize, config: Option<PrimalityTestConfig>) -> u128 {
        if bit_size > (u128::BITS as usize) {
            panic!("The given bit size limit exceeded the capacity of the integer type!")
        }

        loop {
            let t: u128 = self.gen();
            let t = (t >> (u128::BITS - bit_size as u32)) | 1; // filter even numbers
            if is_prime(&Mint::from(t), config).probably() {
                break t
            } else if let Some(p) = next_prime(&t, None) {
                // deterministic primality test will be used for integers under u64
                break p
            }
        }
    }
    
    #[inline]
    fn gen_prime_exact(&mut self, bit_size: usize, config: Option<PrimalityTestConfig>) -> u128 {
        if bit_size > (u128::BITS as usize) {
            panic!("The given bit size limit exceeded the capacity of the integer type!")
        }
        
        loop {
            let t: u128 = self.gen();
            let t = (t >> (u128::BITS - bit_size as u32)) | 1 | (1 << (bit_size - 1));
            if is_prime(&Mint::from(t), config).probably() {
                break t
            } else if let Some(p) = next_prime(&t, None) {
                // deterministic primality test will be used for integers under u64
                break p
            }
        }
    }

    #[inline]
    fn gen_safe_prime(&mut self, bit_size: usize) -> u128 {
        loop {
            let config = Some(PrimalityTestConfig::strict());
            let p = self.gen_prime(bit_size, config);
            if is_prime(&Mint::from(p >> 1), config).probably() {
                break p;
            }
            if let Some(p2) = p.checked_mul(2).and_then(|v| v.checked_add(1)) {
                if is_prime(&p2, config).probably() {
                    break p2;
                }
            }
        }
    }

    #[inline]
    fn gen_safe_prime_exact(&mut self, bit_size: usize) -> u128 {
        loop {
            let config = Some(PrimalityTestConfig::strict());
            let p = self.gen_prime_exact(bit_size, config);
            if is_prime(&Mint::from(p >> 1), config).probably() {
                break p;
            }
            if let Some(p2) = p.checked_mul(2).and_then(|v| v.checked_add(1)) {
                if is_prime(&p2, config).probably() {
                    break p2;
                }
            }
        }
    }
}

#[cfg(feature = "num-bigint")]
impl<R: Rng> RandPrime<BigUint> for R {
    #[inline]
    fn gen_prime(&mut self, bit_size: usize, config: Option<PrimalityTestConfig>) -> BigUint {
        loop {
            let mut t = self.gen_biguint(bit_size as u64);
            t.set_bit(0, true); // filter even numbers
            if is_prime(&t, config).probably() {
                break t
            } else if let Some(p) = next_prime(&t, config) {
                break p
            }
        }
    }

    #[inline]
    fn gen_prime_exact(&mut self, bit_size: usize, config: Option<PrimalityTestConfig>) -> BigUint {
        loop {
            let mut t = self.gen_biguint(bit_size as u64);
            t.set_bit(0, true); // filter even numbers
            t.set_bit(bit_size as u64 - 1, true);
            if is_prime(&t, config).probably() {
                break t
            } else if let Some(p) = next_prime(&t, config) {
                break p
            }
        }
    }

    #[inline]
    fn gen_safe_prime(&mut self, bit_size: usize) -> BigUint {
        let config = Some(PrimalityTestConfig::strict());
        let p = self.gen_prime(bit_size, config);
        if is_prime(&(&p >> 1u8), config).probably() {
            return p;
        }
        let p2 = (p << 1u8) + 1u8;
        if is_prime(&p2, config).probably() {
            return p2;
        }

        self.gen_safe_prime(bit_size)
    }

    #[inline]
    fn gen_safe_prime_exact(&mut self, bit_size: usize) -> BigUint {
        let config = Some(PrimalityTestConfig::strict());
        let p = self.gen_prime_exact(bit_size, config);
        if is_prime(&(&p >> 1u8), config).probably() {
            return p;
        }
        let p2 = (p << 1u8) + 1u8;
        if is_prime(&p2, config).probably() {
            return p2;
        }

        self.gen_safe_prime(bit_size)
    }
}

#[cfg(test)]
mod tests{
    use super::*;
    use crate::nt_funcs::is_safe_prime;

    #[test]
    fn rand_prime() {
        let mut rng = rand::thread_rng();
    
        // test random prime generation for each size
        let p: u8 = rng.gen_prime(8, None);
        assert!(is_prime64(p as u64));
        let p: u16 = rng.gen_prime(16, None);
        assert!(is_prime64(p as u64));
        let p: u32 = rng.gen_prime(32, None);
        assert!(is_prime64(p as u64));
        let p: u64 = rng.gen_prime(64, None);
        assert!(is_prime64(p));
        let p: u128 = rng.gen_prime(128, None);
        assert!(is_prime(&p, None).probably());

        // test random safe prime generation
        let p: u8 = rng.gen_safe_prime(8);
        assert!(is_safe_prime(&p).probably());
        let p: u32 = rng.gen_safe_prime(32);
        assert!(is_safe_prime(&p).probably());
        let p: u128 = rng.gen_safe_prime(128);
        assert!(is_safe_prime(&p).probably());
    
        #[cfg(feature = "num-bigint")]
        {
            let p: BigUint = rng.gen_prime(512, None);
            assert!(is_prime(&p, None).probably());
            let p: BigUint = rng.gen_safe_prime(192);
            assert!(is_safe_prime(&p).probably());
        }
    
        // test bit size limit
        let p: u16 = rng.gen_prime(12, None);
        assert!(p < (1 << 12));
        let p: u32 = rng.gen_prime(24, None);
        assert!(p < (1 << 24));
    }    

    #[test]
    fn rand_prime_exact () {
        let mut rng = rand::thread_rng();

        // test exact size prime generation
        let p: u8 = rng.gen_prime_exact(8, None);
        assert!(is_prime64(p as u64));
        assert_eq!(p.leading_zeros(), 0);
        let p: u32 = rng.gen_prime_exact(32, None);
        assert!(is_prime64(p as u64));
        assert_eq!(p.leading_zeros(), 0);
        let p: u128 = rng.gen_prime_exact(128, None);
        assert!(is_prime(&p, None).probably());
        assert_eq!(p.leading_zeros(), 0);

        #[cfg(feature = "num-bigint")]
        {
            let p: BigUint = rng.gen_prime_exact(192, None);
            assert!(is_prime(&p, None).probably());
            assert_eq!(p.bits(), 192);
        }    
    }
}