1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
use std::ops::{BitAnd, BitOr};
use num_integer::{Integer, Roots};
use num_traits::Pow;
/// This trait support unified bit testing for (unsigned) integers
pub trait BitTest {
/// Get the minimum required number of bits to represent this integer
fn bits(&self) -> usize;
/// Get the i-th bit of the integer, with i specified by `position`
fn bit(&self, position: usize) -> bool;
/// Get the number of trailing zeros in the integer
fn trailing_zeros(&self) -> usize;
}
/// This enum describes the result of primality checks
#[derive(Debug, Clone, Copy)]
pub enum Primality {
/// The number passes deterministic primality check.
Yes,
/// The number is a composite and failed at least one specific primality check.
No,
/// The number passes several probabilistic primality check.
/// The associated float number carries the probability of the number being a prime
/// (conditioned on that it's already a probable prime)
Probable(f32),
}
impl Primality {
/// Check whether the resule indicates that the number is
/// (very) probably a prime. Return false only on Primaliy::No
pub fn probably(self) -> bool {
match self {
Primality::No => false,
_ => true,
}
}
}
impl BitAnd<Primality> for Primality {
type Output = Primality;
/// Combine two primality result by ensuring both numbers are prime
fn bitand(self, rhs: Primality) -> Self::Output {
match self {
Primality::No => Primality::No,
Primality::Yes => rhs,
Primality::Probable(p) => match rhs {
Primality::No => Primality::No,
Primality::Yes => Primality::Probable(p),
Primality::Probable(p2) => Primality::Probable(p * p2),
},
}
}
}
impl BitOr<Primality> for Primality {
type Output = Primality;
/// Combine two primality result by ensuring either numbers is prime
fn bitor(self, rhs: Primality) -> Self::Output {
match self {
Primality::No => rhs,
Primality::Yes => Primality::Yes,
Primality::Probable(p) => match rhs {
Primality::No => Primality::Probable(p),
Primality::Yes => Primality::Yes,
Primality::Probable(p2) => Primality::Probable(1. - (1. - p) * (1. - p2)),
},
}
}
}
/// Represents a configuration for a primality test
#[derive(Debug, Clone, Copy)]
pub struct PrimalityTestConfig {
/// Number of strong probable prime test, starting from base 2
pub sprp_trials: usize,
/// Number of strong probable prime test with random bases
pub sprp_random_trials: usize,
/// Whether perform strong lucas probable prime test (with automatically selected parameters)
pub slprp_test: bool,
/// Whether perform extra strong lucas probable prime test (with automatically selected parameters)
pub eslprp_test: bool,
}
impl PrimalityTestConfig {
/// Create a defalt primality testing configuration. This config will eliminate most
/// composites with little computation
pub fn default() -> Self {
Self {
sprp_trials: 2,
sprp_random_trials: 2,
slprp_test: false,
eslprp_test: false,
}
}
/// Create a configuration with the known stongest deterministic primality test
pub fn strict() -> Self {
Self::bpsw() // TODO: change to 2-base SPRP + VPRP
}
/// Create a configuration for Baillie-PSW test (base 2 SPRP test + SLPRP test)
pub fn bpsw() -> Self {
Self {
sprp_trials: 1,
sprp_random_trials: 0,
slprp_test: true,
eslprp_test: false,
}
}
/// Create a configuration for PSW test (base 2 SPRP + Fibonacci test)
fn psw() {
todo!() // TODO: implement Fibonacci PRP
}
}
/// Represents a configuration for integer factorization
#[derive(Debug, Clone, Copy)]
pub struct FactorizationConfig {
/// Config for testing if a factor is prime
pub prime_test_config: PrimalityTestConfig,
/// Prime limit of trial division, you also need to reserve the primes in the buffer
/// if all primes under the limit are to be tested. `None` means using all available primes.
pub td_limit: Option<u64>,
/// Number of trials with Pollard's rho method
pub rho_trials: usize,
/// Number of trials with Pollard's rho method (Brent variant)
brent_trials: usize,
/// Number of trials with Pollard's p-1 method
pm1_trials: usize,
/// Number of trials with William's p+1 method
pp1_trials: usize,
}
impl FactorizationConfig {
/// Create a defalt primality testing configuration. This config will factorize
/// most integers within decent time
pub fn default() -> Self {
Self {
prime_test_config: PrimalityTestConfig::default(),
td_limit: Some(1 << 14),
rho_trials: 4,
brent_trials: 0,
pm1_trials: 0,
pp1_trials: 0,
}
}
/// Same as the default configuration but with strict primality check
pub fn strict() -> Self {
let mut config = Self::default();
config.prime_test_config = PrimalityTestConfig::strict();
config
}
}
// FIXME: backport to num_integer (see https://github.com/rust-num/num-traits/issues/233)
/// Extension on [num_integer::Roots] to support perfect power check on integers
pub trait ExactRoots: Roots + Pow<u32, Output = Self> + Clone {
fn nth_root_exact(&self, n: u32) -> Option<Self> {
let r = self.nth_root(n);
if &r.clone().pow(n) == self {
Some(r)
} else {
None
}
}
fn sqrt_exact(&self) -> Option<Self> {
self.nth_root_exact(2)
}
fn cbrt_exact(&self) -> Option<Self> {
self.nth_root_exact(3)
}
fn is_nth_power(&self, n: u32) -> bool {
self.nth_root_exact(n).is_some()
}
fn is_square(&self) -> bool {
self.sqrt_exact().is_some()
}
fn is_cubic(&self) -> bool {
self.cbrt_exact().is_some()
}
}
// TODO: implement quick div_exact (which might be useful in various functions)
// REF: GMP `mpz_divexact`
// FLINT `fmpz_divexact`
// factor.c `divexact_21`
// TODO: implement quick is_x_power (specifically is_235_power)
// REF: PARI/GP `Z_ispowerall`, `is_357_power`
// FLINT `n_is_perfect_power235`, `fmpz_is_perfect_power`
// GMP `mpz_perfect_power_p`
/// This trait represents a general data structure that stores primes.
///
/// It's recommended to store at least a bunch of small primes in the buffer
/// to make some of the algorithms more efficient.
pub trait PrimeBuffer<'a> {
type PrimeIter: Iterator<Item = &'a u64>;
/// Directly return an iterator of existing primes
fn iter(&'a self) -> Self::PrimeIter;
/// Generate primes until the upper bound is equal or larger than limit
fn reserve(&mut self, limit: u64);
/// Get the upper bound of primes in the list
fn bound(&self) -> u64;
/// Test if the number is in the buffer. If a number is not in the buffer,
/// then it's either a composite or large than [PrimeBuffer::bound()]
fn contains(&self, num: u64) -> bool;
/// clear the prime buffer to save memory
fn clear(&mut self);
}
/// This trait implements various primality testing algorithms
///
/// Reference:
/// - <http://ntheory.org/pseudoprimes.html>
pub trait PrimalityUtils: Integer + Clone {
/// Test if the integer is a (Fermat) probable prime
fn is_prp(&self, base: Self) -> bool;
/// Test if the integer is a strong probable prime (based on miller-rabin test)
fn is_sprp(&self, base: Self) -> bool;
/// Test if the integer is a Lucas probable prime
/// If either of p, q is not specified, then we will use Selfridge's Method A to choose p, q
fn is_lprp(&self, p: Option<usize>, q: Option<isize>) -> bool;
/// Test if the integer is a strong Lucas probable prime
/// If either of p, q is not specified, then we will use Selfridge's Method A to choose p, q
fn is_slprp(&self, p: Option<usize>, q: Option<isize>) -> bool;
/// Test if the integer is an extra strong Lucas probable prime
/// If p is not specified, then first p starting from 3 such that Jacobi symbol is -1 will be chosen, which is sometimes refered as "Method C"
fn is_eslprp(&self, p: Option<usize>) -> bool;
// TODO: implement ECPP test
// https://en.wikipedia.org/wiki/Elliptic_curve_primality
// TODO: implement is_vprp (Lucas-V probable prime test)
// https://arxiv.org/pdf/2006.14425.pdf
}
/// Supports random generation of primes
pub trait RandPrime<T> {
/// Generate a random prime within the given bit size limit
fn gen_prime(&mut self, bit_size: usize, config: Option<PrimalityTestConfig>) -> T;
/// Generate a random (Sophie German) safe prime within the given bit size limit. The generated prime
/// is guaranteed to pass the [is_safe_prime][crate::nt_funcs::is_safe_prime] test
fn gen_safe_prime(&mut self, bit_size: usize) -> T;
}