num-bigint 0.1.37

Big integer implementation for Rust
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
use std::borrow::Cow;
use std::default::Default;
use std::iter::repeat;
use std::ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Neg, Rem, Shl, Shr, Sub};
use std::str::{self, FromStr};
use std::fmt;
use std::cmp;
use std::cmp::Ordering::{self, Less, Greater, Equal};
use std::{f32, f64};
use std::{u8, u64};
use std::ascii::AsciiExt;

#[cfg(feature = "serde")]
use serde;

use integer::Integer;
use traits::{ToPrimitive, FromPrimitive, Float, Num, Unsigned, CheckedAdd, CheckedSub, CheckedMul,
             CheckedDiv, Zero, One};

#[path = "algorithms.rs"]
mod algorithms;
pub use self::algorithms::big_digit;
pub use self::big_digit::{BigDigit, DoubleBigDigit, ZERO_BIG_DIGIT};

use self::algorithms::{mac_with_carry, mul3, div_rem, div_rem_digit};
use self::algorithms::{__add2, add2, sub2, sub2rev};
use self::algorithms::{biguint_shl, biguint_shr};
use self::algorithms::{cmp_slice, fls, ilog2};

use ParseBigIntError;

#[cfg(test)]
#[path = "tests/biguint.rs"]
mod biguint_tests;

/// A big unsigned integer type.
///
/// A `BigUint`-typed value `BigUint { data: vec!(a, b, c) }` represents a number
/// `(a + b * big_digit::BASE + c * big_digit::BASE^2)`.
#[derive(Clone, Debug, Hash)]
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
pub struct BigUint {
    data: Vec<BigDigit>,
}

impl PartialEq for BigUint {
    #[inline]
    fn eq(&self, other: &BigUint) -> bool {
        match self.cmp(other) {
            Equal => true,
            _ => false,
        }
    }
}
impl Eq for BigUint {}

impl PartialOrd for BigUint {
    #[inline]
    fn partial_cmp(&self, other: &BigUint) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for BigUint {
    #[inline]
    fn cmp(&self, other: &BigUint) -> Ordering {
        cmp_slice(&self.data[..], &other.data[..])
    }
}

impl Default for BigUint {
    #[inline]
    fn default() -> BigUint {
        Zero::zero()
    }
}

impl fmt::Display for BigUint {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad_integral(true, "", &self.to_str_radix(10))
    }
}

impl fmt::LowerHex for BigUint {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad_integral(true, "0x", &self.to_str_radix(16))
    }
}

impl fmt::UpperHex for BigUint {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad_integral(true, "0x", &self.to_str_radix(16).to_ascii_uppercase())
    }
}

impl fmt::Binary for BigUint {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad_integral(true, "0b", &self.to_str_radix(2))
    }
}

impl fmt::Octal for BigUint {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad_integral(true, "0o", &self.to_str_radix(8))
    }
}

impl FromStr for BigUint {
    type Err = ParseBigIntError;

    #[inline]
    fn from_str(s: &str) -> Result<BigUint, ParseBigIntError> {
        BigUint::from_str_radix(s, 10)
    }
}

// Convert from a power of two radix (bits == ilog2(radix)) where bits evenly divides
// BigDigit::BITS
fn from_bitwise_digits_le(v: &[u8], bits: usize) -> BigUint {
    debug_assert!(!v.is_empty() && bits <= 8 && big_digit::BITS % bits == 0);
    debug_assert!(v.iter().all(|&c| (c as BigDigit) < (1 << bits)));

    let digits_per_big_digit = big_digit::BITS / bits;

    let data = v.chunks(digits_per_big_digit)
                .map(|chunk| {
                    chunk.iter().rev().fold(0, |acc, &c| (acc << bits) | c as BigDigit)
                })
                .collect();

    BigUint::new(data)
}

// Convert from a power of two radix (bits == ilog2(radix)) where bits doesn't evenly divide
// BigDigit::BITS
fn from_inexact_bitwise_digits_le(v: &[u8], bits: usize) -> BigUint {
    debug_assert!(!v.is_empty() && bits <= 8 && big_digit::BITS % bits != 0);
    debug_assert!(v.iter().all(|&c| (c as BigDigit) < (1 << bits)));

    let big_digits = (v.len() * bits + big_digit::BITS - 1) / big_digit::BITS;
    let mut data = Vec::with_capacity(big_digits);

    let mut d = 0;
    let mut dbits = 0; // number of bits we currently have in d

    // walk v accumululating bits in d; whenever we accumulate big_digit::BITS in d, spit out a
    // big_digit:
    for &c in v {
        d |= (c as BigDigit) << dbits;
        dbits += bits;

        if dbits >= big_digit::BITS {
            data.push(d);
            dbits -= big_digit::BITS;
            // if dbits was > big_digit::BITS, we dropped some of the bits in c (they couldn't fit
            // in d) - grab the bits we lost here:
            d = (c as BigDigit) >> (bits - dbits);
        }
    }

    if dbits > 0 {
        debug_assert!(dbits < big_digit::BITS);
        data.push(d as BigDigit);
    }

    BigUint::new(data)
}

// Read little-endian radix digits
fn from_radix_digits_be(v: &[u8], radix: u32) -> BigUint {
    debug_assert!(!v.is_empty() && !radix.is_power_of_two());
    debug_assert!(v.iter().all(|&c| (c as u32) < radix));

    // Estimate how big the result will be, so we can pre-allocate it.
    let bits = (radix as f64).log2() * v.len() as f64;
    let big_digits = (bits / big_digit::BITS as f64).ceil();
    let mut data = Vec::with_capacity(big_digits as usize);

    let (base, power) = get_radix_base(radix);
    let radix = radix as BigDigit;

    let r = v.len() % power;
    let i = if r == 0 {
        power
    } else {
        r
    };
    let (head, tail) = v.split_at(i);

    let first = head.iter().fold(0, |acc, &d| acc * radix + d as BigDigit);
    data.push(first);

    debug_assert!(tail.len() % power == 0);
    for chunk in tail.chunks(power) {
        if data.last() != Some(&0) {
            data.push(0);
        }

        let mut carry = 0;
        for d in data.iter_mut() {
            *d = mac_with_carry(0, *d, base, &mut carry);
        }
        debug_assert!(carry == 0);

        let n = chunk.iter().fold(0, |acc, &d| acc * radix + d as BigDigit);
        add2(&mut data, &[n]);
    }

    BigUint::new(data)
}

impl Num for BigUint {
    type FromStrRadixErr = ParseBigIntError;

    /// Creates and initializes a `BigUint`.
    fn from_str_radix(s: &str, radix: u32) -> Result<BigUint, ParseBigIntError> {
        assert!(2 <= radix && radix <= 36, "The radix must be within 2...36");
        let mut s = s;
        if s.starts_with('+') {
            let tail = &s[1..];
            if !tail.starts_with('+') {
                s = tail
            }
        }

        if s.is_empty() {
            // create ParseIntError::Empty
            let e = u64::from_str_radix(s, radix).unwrap_err();
            return Err(e.into());
        }

        // First normalize all characters to plain digit values
        let mut v = Vec::with_capacity(s.len());
        for b in s.bytes() {
            let d = match b {
                b'0'...b'9' => b - b'0',
                b'a'...b'z' => b - b'a' + 10,
                b'A'...b'Z' => b - b'A' + 10,
                _ => u8::MAX,
            };
            if d < radix as u8 {
                v.push(d);
            } else {
                // create ParseIntError::InvalidDigit
                // Include the previous character for context.
                let i = cmp::max(v.len(), 1) - 1;
                let e = u64::from_str_radix(&s[i..], radix).unwrap_err();
                return Err(e.into());
            }
        }

        let res = if radix.is_power_of_two() {
            // Powers of two can use bitwise masks and shifting instead of multiplication
            let bits = ilog2(radix);
            v.reverse();
            if big_digit::BITS % bits == 0 {
                from_bitwise_digits_le(&v, bits)
            } else {
                from_inexact_bitwise_digits_le(&v, bits)
            }
        } else {
            from_radix_digits_be(&v, radix)
        };
        Ok(res)
    }
}

forward_all_binop_to_val_ref_commutative!(impl BitAnd for BigUint, bitand);

impl<'a> BitAnd<&'a BigUint> for BigUint {
    type Output = BigUint;

    #[inline]
    fn bitand(self, other: &BigUint) -> BigUint {
        let mut data = self.data;
        for (ai, &bi) in data.iter_mut().zip(other.data.iter()) {
            *ai &= bi;
        }
        data.truncate(other.data.len());
        BigUint::new(data)
    }
}

forward_all_binop_to_val_ref_commutative!(impl BitOr for BigUint, bitor);

impl<'a> BitOr<&'a BigUint> for BigUint {
    type Output = BigUint;

    fn bitor(self, other: &BigUint) -> BigUint {
        let mut data = self.data;
        for (ai, &bi) in data.iter_mut().zip(other.data.iter()) {
            *ai |= bi;
        }
        if other.data.len() > data.len() {
            let extra = &other.data[data.len()..];
            data.extend(extra.iter().cloned());
        }
        BigUint::new(data)
    }
}

forward_all_binop_to_val_ref_commutative!(impl BitXor for BigUint, bitxor);

impl<'a> BitXor<&'a BigUint> for BigUint {
    type Output = BigUint;

    fn bitxor(self, other: &BigUint) -> BigUint {
        let mut data = self.data;
        for (ai, &bi) in data.iter_mut().zip(other.data.iter()) {
            *ai ^= bi;
        }
        if other.data.len() > data.len() {
            let extra = &other.data[data.len()..];
            data.extend(extra.iter().cloned());
        }
        BigUint::new(data)
    }
}

impl Shl<usize> for BigUint {
    type Output = BigUint;

    #[inline]
    fn shl(self, rhs: usize) -> BigUint {
        biguint_shl(Cow::Owned(self), rhs)
    }
}

impl<'a> Shl<usize> for &'a BigUint {
    type Output = BigUint;

    #[inline]
    fn shl(self, rhs: usize) -> BigUint {
        biguint_shl(Cow::Borrowed(self), rhs)
    }
}

impl Shr<usize> for BigUint {
    type Output = BigUint;

    #[inline]
    fn shr(self, rhs: usize) -> BigUint {
        biguint_shr(Cow::Owned(self), rhs)
    }
}

impl<'a> Shr<usize> for &'a BigUint {
    type Output = BigUint;

    #[inline]
    fn shr(self, rhs: usize) -> BigUint {
        biguint_shr(Cow::Borrowed(self), rhs)
    }
}

impl Zero for BigUint {
    #[inline]
    fn zero() -> BigUint {
        BigUint::new(Vec::new())
    }

    #[inline]
    fn is_zero(&self) -> bool {
        self.data.is_empty()
    }
}

impl One for BigUint {
    #[inline]
    fn one() -> BigUint {
        BigUint::new(vec![1])
    }
}

impl Unsigned for BigUint {}

forward_all_binop_to_val_ref_commutative!(impl Add for BigUint, add);

impl<'a> Add<&'a BigUint> for BigUint {
    type Output = BigUint;

    fn add(mut self, other: &BigUint) -> BigUint {
        if self.data.len() < other.data.len() {
            let extra = other.data.len() - self.data.len();
            self.data.extend(repeat(0).take(extra));
        }

        let carry = __add2(&mut self.data[..], &other.data[..]);
        if carry != 0 {
            self.data.push(carry);
        }

        self
    }
}

forward_val_val_binop!(impl Sub for BigUint, sub);
forward_ref_ref_binop!(impl Sub for BigUint, sub);

impl<'a> Sub<&'a BigUint> for BigUint {
    type Output = BigUint;

    fn sub(mut self, other: &BigUint) -> BigUint {
        sub2(&mut self.data[..], &other.data[..]);
        self.normalize()
    }
}

impl<'a> Sub<BigUint> for &'a BigUint {
    type Output = BigUint;

    fn sub(self, mut other: BigUint) -> BigUint {
        if other.data.len() < self.data.len() {
            let extra = self.data.len() - other.data.len();
            other.data.extend(repeat(0).take(extra));
        }

        sub2rev(&self.data[..], &mut other.data[..]);
        other.normalize()
    }
}

forward_all_binop_to_ref_ref!(impl Mul for BigUint, mul);

impl<'a, 'b> Mul<&'b BigUint> for &'a BigUint {
    type Output = BigUint;

    #[inline]
    fn mul(self, other: &BigUint) -> BigUint {
        mul3(&self.data[..], &other.data[..])
    }
}

forward_all_binop_to_ref_ref!(impl Div for BigUint, div);

impl<'a, 'b> Div<&'b BigUint> for &'a BigUint {
    type Output = BigUint;

    #[inline]
    fn div(self, other: &BigUint) -> BigUint {
        let (q, _) = self.div_rem(other);
        return q;
    }
}

forward_all_binop_to_ref_ref!(impl Rem for BigUint, rem);

impl<'a, 'b> Rem<&'b BigUint> for &'a BigUint {
    type Output = BigUint;

    #[inline]
    fn rem(self, other: &BigUint) -> BigUint {
        let (_, r) = self.div_rem(other);
        return r;
    }
}

impl Neg for BigUint {
    type Output = BigUint;

    #[inline]
    fn neg(self) -> BigUint {
        panic!()
    }
}

impl<'a> Neg for &'a BigUint {
    type Output = BigUint;

    #[inline]
    fn neg(self) -> BigUint {
        panic!()
    }
}

impl CheckedAdd for BigUint {
    #[inline]
    fn checked_add(&self, v: &BigUint) -> Option<BigUint> {
        return Some(self.add(v));
    }
}

impl CheckedSub for BigUint {
    #[inline]
    fn checked_sub(&self, v: &BigUint) -> Option<BigUint> {
        match self.cmp(v) {
            Less => None,
            Equal => Some(Zero::zero()),
            Greater => Some(self.sub(v)),
        }
    }
}

impl CheckedMul for BigUint {
    #[inline]
    fn checked_mul(&self, v: &BigUint) -> Option<BigUint> {
        return Some(self.mul(v));
    }
}

impl CheckedDiv for BigUint {
    #[inline]
    fn checked_div(&self, v: &BigUint) -> Option<BigUint> {
        if v.is_zero() {
            return None;
        }
        return Some(self.div(v));
    }
}

impl Integer for BigUint {
    #[inline]
    fn div_rem(&self, other: &BigUint) -> (BigUint, BigUint) {
        div_rem(self, other)
    }

    #[inline]
    fn div_floor(&self, other: &BigUint) -> BigUint {
        let (d, _) = div_rem(self, other);
        d
    }

    #[inline]
    fn mod_floor(&self, other: &BigUint) -> BigUint {
        let (_, m) = div_rem(self, other);
        m
    }

    #[inline]
    fn div_mod_floor(&self, other: &BigUint) -> (BigUint, BigUint) {
        div_rem(self, other)
    }

    /// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
    ///
    /// The result is always positive.
    #[inline]
    fn gcd(&self, other: &BigUint) -> BigUint {
        // Use Euclid's algorithm
        let mut m = (*self).clone();
        let mut n = (*other).clone();
        while !m.is_zero() {
            let temp = m;
            m = n % &temp;
            n = temp;
        }
        return n;
    }

    /// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
    #[inline]
    fn lcm(&self, other: &BigUint) -> BigUint {
        ((self * other) / self.gcd(other))
    }

    /// Deprecated, use `is_multiple_of` instead.
    #[inline]
    fn divides(&self, other: &BigUint) -> bool {
        self.is_multiple_of(other)
    }

    /// Returns `true` if the number is a multiple of `other`.
    #[inline]
    fn is_multiple_of(&self, other: &BigUint) -> bool {
        (self % other).is_zero()
    }

    /// Returns `true` if the number is divisible by `2`.
    #[inline]
    fn is_even(&self) -> bool {
        // Considering only the last digit.
        match self.data.first() {
            Some(x) => x.is_even(),
            None => true,
        }
    }

    /// Returns `true` if the number is not divisible by `2`.
    #[inline]
    fn is_odd(&self) -> bool {
        !self.is_even()
    }
}

fn high_bits_to_u64(v: &BigUint) -> u64 {
    match v.data.len() {
        0   => 0,
        1   => v.data[0] as u64,
        _   => {
            let mut bits = v.bits();
            let mut ret = 0u64;
            let mut ret_bits = 0;

            for d in v.data.iter().rev() {
                let digit_bits = (bits - 1) % big_digit::BITS + 1;
                let bits_want = cmp::min(64 - ret_bits, digit_bits);

                if bits_want != 64 {
                    ret <<= bits_want;
                }
                ret      |= *d as u64 >> (digit_bits - bits_want);
                ret_bits += bits_want;
                bits     -= bits_want;

                if ret_bits == 64 {
                    break;
                }
            }

            ret
        }
    }
}

impl ToPrimitive for BigUint {
    #[inline]
    fn to_i64(&self) -> Option<i64> {
        self.to_u64().and_then(|n| {
            // If top bit of u64 is set, it's too large to convert to i64.
            if n >> 63 == 0 {
                Some(n as i64)
            } else {
                None
            }
        })
    }

    #[inline]
    fn to_u64(&self) -> Option<u64> {
        let mut ret: u64 = 0;
        let mut bits = 0;

        for i in self.data.iter() {
            if bits >= 64 {
                return None;
            }

            ret += (*i as u64) << bits;
            bits += big_digit::BITS;
        }

        Some(ret)
    }

    #[inline]
    fn to_f32(&self) -> Option<f32> {
        let mantissa = high_bits_to_u64(self);
        let exponent = self.bits() - fls(mantissa);

        if exponent > f32::MAX_EXP as usize {
            None
        } else {
            let ret = (mantissa as f32) * 2.0f32.powi(exponent as i32);
            if ret.is_infinite() {
                None
            } else {
                Some(ret)
            }
        }
    }

    #[inline]
    fn to_f64(&self) -> Option<f64> {
        let mantissa = high_bits_to_u64(self);
        let exponent = self.bits() - fls(mantissa);

        if exponent > f64::MAX_EXP as usize {
            None
        } else {
            let ret = (mantissa as f64) * 2.0f64.powi(exponent as i32);
            if ret.is_infinite() {
                None
            } else {
                Some(ret)
            }
        }
    }
}

impl FromPrimitive for BigUint {
    #[inline]
    fn from_i64(n: i64) -> Option<BigUint> {
        if n >= 0 {
            Some(BigUint::from(n as u64))
        } else {
            None
        }
    }

    #[inline]
    fn from_u64(n: u64) -> Option<BigUint> {
        Some(BigUint::from(n))
    }

    #[inline]
    fn from_f64(mut n: f64) -> Option<BigUint> {
        // handle NAN, INFINITY, NEG_INFINITY
        if !n.is_finite() {
            return None;
        }

        // match the rounding of casting from float to int
        n = n.trunc();

        // handle 0.x, -0.x
        if n.is_zero() {
            return Some(BigUint::zero());
        }

        let (mantissa, exponent, sign) = Float::integer_decode(n);

        if sign == -1 {
            return None;
        }

        let mut ret = BigUint::from(mantissa);
        if exponent > 0 {
            ret = ret << exponent as usize;
        } else if exponent < 0 {
            ret = ret >> (-exponent) as usize;
        }
        Some(ret)
    }
}

impl From<u64> for BigUint {
    #[inline]
    fn from(mut n: u64) -> Self {
        let mut ret: BigUint = Zero::zero();

        while n != 0 {
            ret.data.push(n as BigDigit);
            // don't overflow if BITS is 64:
            n = (n >> 1) >> (big_digit::BITS - 1);
        }

        ret
    }
}

macro_rules! impl_biguint_from_uint {
    ($T:ty) => {
        impl From<$T> for BigUint {
            #[inline]
            fn from(n: $T) -> Self {
                BigUint::from(n as u64)
            }
        }
    }
}

impl_biguint_from_uint!(u8);
impl_biguint_from_uint!(u16);
impl_biguint_from_uint!(u32);
impl_biguint_from_uint!(usize);

/// A generic trait for converting a value to a `BigUint`.
pub trait ToBigUint {
    /// Converts the value of `self` to a `BigUint`.
    fn to_biguint(&self) -> Option<BigUint>;
}

impl ToBigUint for BigUint {
    #[inline]
    fn to_biguint(&self) -> Option<BigUint> {
        Some(self.clone())
    }
}

macro_rules! impl_to_biguint {
    ($T:ty, $from_ty:path) => {
        impl ToBigUint for $T {
            #[inline]
            fn to_biguint(&self) -> Option<BigUint> {
                $from_ty(*self)
            }
        }
    }
}

impl_to_biguint!(isize, FromPrimitive::from_isize);
impl_to_biguint!(i8, FromPrimitive::from_i8);
impl_to_biguint!(i16, FromPrimitive::from_i16);
impl_to_biguint!(i32, FromPrimitive::from_i32);
impl_to_biguint!(i64, FromPrimitive::from_i64);
impl_to_biguint!(usize, FromPrimitive::from_usize);
impl_to_biguint!(u8, FromPrimitive::from_u8);
impl_to_biguint!(u16, FromPrimitive::from_u16);
impl_to_biguint!(u32, FromPrimitive::from_u32);
impl_to_biguint!(u64, FromPrimitive::from_u64);
impl_to_biguint!(f32, FromPrimitive::from_f32);
impl_to_biguint!(f64, FromPrimitive::from_f64);

// Extract bitwise digits that evenly divide BigDigit
fn to_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec<u8> {
    debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits == 0);

    let last_i = u.data.len() - 1;
    let mask: BigDigit = (1 << bits) - 1;
    let digits_per_big_digit = big_digit::BITS / bits;
    let digits = (u.bits() + bits - 1) / bits;
    let mut res = Vec::with_capacity(digits);

    for mut r in u.data[..last_i].iter().cloned() {
        for _ in 0..digits_per_big_digit {
            res.push((r & mask) as u8);
            r >>= bits;
        }
    }

    let mut r = u.data[last_i];
    while r != 0 {
        res.push((r & mask) as u8);
        r >>= bits;
    }

    res
}

// Extract bitwise digits that don't evenly divide BigDigit
fn to_inexact_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec<u8> {
    debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits != 0);

    let mask: BigDigit = (1 << bits) - 1;
    let digits = (u.bits() + bits - 1) / bits;
    let mut res = Vec::with_capacity(digits);

    let mut r = 0;
    let mut rbits = 0;

    for c in &u.data {
        r |= *c << rbits;
        rbits += big_digit::BITS;

        while rbits >= bits {
            res.push((r & mask) as u8);
            r >>= bits;

            // r had more bits than it could fit - grab the bits we lost
            if rbits > big_digit::BITS {
                r = *c >> (big_digit::BITS - (rbits - bits));
            }

            rbits -= bits;
        }
    }

    if rbits != 0 {
        res.push(r as u8);
    }

    while let Some(&0) = res.last() {
        res.pop();
    }

    res
}

// Extract little-endian radix digits
#[inline(always)] // forced inline to get const-prop for radix=10
fn to_radix_digits_le(u: &BigUint, radix: u32) -> Vec<u8> {
    debug_assert!(!u.is_zero() && !radix.is_power_of_two());

    // Estimate how big the result will be, so we can pre-allocate it.
    let radix_digits = ((u.bits() as f64) / (radix as f64).log2()).ceil();
    let mut res = Vec::with_capacity(radix_digits as usize);
    let mut digits = u.clone();

    let (base, power) = get_radix_base(radix);
    let radix = radix as BigDigit;

    while digits.data.len() > 1 {
        let (q, mut r) = div_rem_digit(digits, base);
        for _ in 0..power {
            res.push((r % radix) as u8);
            r /= radix;
        }
        digits = q;
    }

    let mut r = digits.data[0];
    while r != 0 {
        res.push((r % radix) as u8);
        r /= radix;
    }

    res
}

pub fn to_str_radix_reversed(u: &BigUint, radix: u32) -> Vec<u8> {
    assert!(2 <= radix && radix <= 36, "The radix must be within 2...36");

    if u.is_zero() {
        return vec![b'0'];
    }

    let mut res = if radix.is_power_of_two() {
        // Powers of two can use bitwise masks and shifting instead of division
        let bits = ilog2(radix);
        if big_digit::BITS % bits == 0 {
            to_bitwise_digits_le(u, bits)
        } else {
            to_inexact_bitwise_digits_le(u, bits)
        }
    } else if radix == 10 {
        // 10 is so common that it's worth separating out for const-propagation.
        // Optimizers can often turn constant division into a faster multiplication.
        to_radix_digits_le(u, 10)
    } else {
        to_radix_digits_le(u, radix)
    };

    // Now convert everything to ASCII digits.
    for r in &mut res {
        debug_assert!((*r as u32) < radix);
        if *r < 10 {
            *r += b'0';
        } else {
            *r += b'a' - 10;
        }
    }
    res
}

impl BigUint {
    /// Creates and initializes a `BigUint`.
    ///
    /// The digits are in little-endian base 2^32.
    #[inline]
    pub fn new(digits: Vec<BigDigit>) -> BigUint {
        BigUint { data: digits }.normalize()
    }

    /// Creates and initializes a `BigUint`.
    ///
    /// The digits are in little-endian base 2^32.
    #[inline]
    pub fn from_slice(slice: &[BigDigit]) -> BigUint {
        BigUint::new(slice.to_vec())
    }

    /// Creates and initializes a `BigUint`.
    ///
    /// The bytes are in big-endian byte order.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_bigint::BigUint;
    ///
    /// assert_eq!(BigUint::from_bytes_be(b"A"),
    ///            BigUint::parse_bytes(b"65", 10).unwrap());
    /// assert_eq!(BigUint::from_bytes_be(b"AA"),
    ///            BigUint::parse_bytes(b"16705", 10).unwrap());
    /// assert_eq!(BigUint::from_bytes_be(b"AB"),
    ///            BigUint::parse_bytes(b"16706", 10).unwrap());
    /// assert_eq!(BigUint::from_bytes_be(b"Hello world!"),
    ///            BigUint::parse_bytes(b"22405534230753963835153736737", 10).unwrap());
    /// ```
    #[inline]
    pub fn from_bytes_be(bytes: &[u8]) -> BigUint {
        if bytes.is_empty() {
            Zero::zero()
        } else {
            let mut v = bytes.to_vec();
            v.reverse();
            BigUint::from_bytes_le(&*v)
        }
    }

    /// Creates and initializes a `BigUint`.
    ///
    /// The bytes are in little-endian byte order.
    #[inline]
    pub fn from_bytes_le(bytes: &[u8]) -> BigUint {
        if bytes.is_empty() {
            Zero::zero()
        } else {
            from_bitwise_digits_le(bytes, 8)
        }
    }

    /// Returns the byte representation of the `BigUint` in little-endian byte order.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_bigint::BigUint;
    ///
    /// let i = BigUint::parse_bytes(b"1125", 10).unwrap();
    /// assert_eq!(i.to_bytes_le(), vec![101, 4]);
    /// ```
    #[inline]
    pub fn to_bytes_le(&self) -> Vec<u8> {
        if self.is_zero() {
            vec![0]
        } else {
            to_bitwise_digits_le(self, 8)
        }
    }

    /// Returns the byte representation of the `BigUint` in big-endian byte order.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_bigint::BigUint;
    ///
    /// let i = BigUint::parse_bytes(b"1125", 10).unwrap();
    /// assert_eq!(i.to_bytes_be(), vec![4, 101]);
    /// ```
    #[inline]
    pub fn to_bytes_be(&self) -> Vec<u8> {
        let mut v = self.to_bytes_le();
        v.reverse();
        v
    }

    /// Returns the integer formatted as a string in the given radix.
    /// `radix` must be in the range `[2, 36]`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_bigint::BigUint;
    ///
    /// let i = BigUint::parse_bytes(b"ff", 16).unwrap();
    /// assert_eq!(i.to_str_radix(16), "ff");
    /// ```
    #[inline]
    pub fn to_str_radix(&self, radix: u32) -> String {
        let mut v = to_str_radix_reversed(self, radix);
        v.reverse();
        unsafe { String::from_utf8_unchecked(v) }
    }

    /// Creates and initializes a `BigUint`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_bigint::{BigUint, ToBigUint};
    ///
    /// assert_eq!(BigUint::parse_bytes(b"1234", 10), ToBigUint::to_biguint(&1234));
    /// assert_eq!(BigUint::parse_bytes(b"ABCD", 16), ToBigUint::to_biguint(&0xABCD));
    /// assert_eq!(BigUint::parse_bytes(b"G", 16), None);
    /// ```
    #[inline]
    pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigUint> {
        str::from_utf8(buf).ok().and_then(|s| BigUint::from_str_radix(s, radix).ok())
    }

    /// Determines the fewest bits necessary to express the `BigUint`.
    #[inline]
    pub fn bits(&self) -> usize {
        if self.is_zero() {
            return 0;
        }
        let zeros = self.data.last().unwrap().leading_zeros();
        return self.data.len() * big_digit::BITS - zeros as usize;
    }

    /// Strips off trailing zero bigdigits - comparisons require the last element in the vector to
    /// be nonzero.
    #[inline]
    fn normalize(mut self) -> BigUint {
        while let Some(&0) = self.data.last() {
            self.data.pop();
        }
        self
    }
}

#[cfg(feature = "serde")]
impl serde::Serialize for BigUint {
    fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error>
        where S: serde::Serializer
    {
        self.data.serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl serde::Deserialize for BigUint {
    fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error>
        where D: serde::Deserializer
    {
        let data = try!(Vec::deserialize(deserializer));
        Ok(BigUint { data: data })
    }
}

/// Returns the greatest power of the radix <= big_digit::BASE
#[inline]
fn get_radix_base(radix: u32) -> (BigDigit, usize) {
    debug_assert!(2 <= radix && radix <= 36, "The radix must be within 2...36");
    debug_assert!(!radix.is_power_of_two());

    // To generate this table:
    //    for radix in 2u64..37 {
    //        let mut power = big_digit::BITS / fls(radix as u64);
    //        let mut base = radix.pow(power as u32);
    //
    //        while let Some(b) = base.checked_mul(radix) {
    //            if b > big_digit::MAX {
    //                break;
    //            }
    //            base = b;
    //            power += 1;
    //        }
    //
    //        println!("({:10}, {:2}), // {:2}", base, power, radix);
    //    }

    match big_digit::BITS {
        32  => {
            const BASES: [(u32, usize); 37] = [(0, 0), (0, 0),
                (0,                     0), // 2
                (3486784401,            20),// 3
                (0,                     0), // 4
                (1220703125,            13),// 5
                (2176782336,            12),// 6
                (1977326743,            11),// 7
                (0,                     0), // 8
                (3486784401,            10),// 9
                (1000000000,            9), // 10
                (2357947691,            9), // 11
                (429981696,             8), // 12
                (815730721,             8), // 13
                (1475789056,            8), // 14
                (2562890625,            8), // 15
                (0,                     0), // 16
                (410338673,             7), // 17
                (612220032,             7), // 18
                (893871739,             7), // 19
                (1280000000,            7), // 20
                (1801088541,            7), // 21
                (2494357888,            7), // 22
                (3404825447,            7), // 23
                (191102976,             6), // 24
                (244140625,             6), // 25
                (308915776,             6), // 26
                (387420489,             6), // 27
                (481890304,             6), // 28
                (594823321,             6), // 29
                (729000000,             6), // 30
                (887503681,             6), // 31
                (0,                     0), // 32
                (1291467969,            6), // 33
                (1544804416,            6), // 34
                (1838265625,            6), // 35
                (2176782336,            6)  // 36
            ];

            let (base, power) = BASES[radix as usize];
            (base as BigDigit, power)
        }
        64  => {
            const BASES: [(u64, usize); 37] = [(0, 0), (0, 0),
                (9223372036854775808,	63), //  2
                (12157665459056928801,	40), //  3
                (4611686018427387904,	31), //  4
                (7450580596923828125,	27), //  5
                (4738381338321616896,	24), //  6
                (3909821048582988049,	22), //  7
                (9223372036854775808,	21), //  8
                (12157665459056928801,	20), //  9
                (10000000000000000000,	19), // 10
                (5559917313492231481,	18), // 11
                (2218611106740436992,	17), // 12
                (8650415919381337933,	17), // 13
                (2177953337809371136,	16), // 14
                (6568408355712890625,	16), // 15
                (1152921504606846976,	15), // 16
                (2862423051509815793,	15), // 17
                (6746640616477458432,	15), // 18
                (15181127029874798299,	15), // 19
                (1638400000000000000,	14), // 20
                (3243919932521508681,	14), // 21
                (6221821273427820544,	14), // 22
                (11592836324538749809,	14), // 23
                (876488338465357824,	13), // 24
                (1490116119384765625,	13), // 25
                (2481152873203736576,	13), // 26
                (4052555153018976267,	13), // 27
                (6502111422497947648,	13), // 28
                (10260628712958602189,	13), // 29
                (15943230000000000000,	13), // 30
                (787662783788549761,	12), // 31
                (1152921504606846976,	12), // 32
                (1667889514952984961,	12), // 33
                (2386420683693101056,	12), // 34
                (3379220508056640625,	12), // 35
                (4738381338321616896,	12), // 36
            ];

            let (base, power) = BASES[radix as usize];
            (base as BigDigit, power)
        }
        _   => panic!("Invalid bigdigit size")
    }
}