1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//!  Definitions.

#[cfg(feature="serde")]
use serde::{Serialize, Deserialize};

/// Number of "digits" in BigFloat number.
pub const DECIMAL_PARTS: usize = 10;

/// Number representation.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature="serde", derive(Serialize, Deserialize))]
pub struct BigFloatNum {
    pub (crate) sign: i8,                // sign
    pub (crate) e: i8,                   // exponent
    pub (crate) n: i16,                  // the number of decimal positions in the mantissa excluding leading zeroes
    pub (crate) m: [i16; DECIMAL_PARTS], // mantissa
}

/// Possible errors.
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
pub enum Error {
    /// Exponent value becomes greater than the upper bound.
    /// Error stores sign of resulting number.
    ExponentOverflow(i8),

    /// Divizor is zero.
    DivisionByZero,     

    /// Argument must not be a negative number.
    ArgumentIsNegative,

    /// Invalid argument.
    InvalidArgument,
}


/// Possible errors.
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
pub enum RoundingMode {
    /// Round half toward positive infinity.
    Up,

    /// Round half toward negative infinity.
    Down,

    /// Round half toward zero.
    ToZero,

    /// Round half away from zero.
    FromZero,

    /// Round half to even.
    ToEven,

    /// Round half to odd.
    ToOdd,
}


pub const DECIMAL_BASE_LOG10: usize = 4;    // number decimal positions in a digit = log10(DECIMAL_BASE)
pub const DECIMAL_POSITIONS: usize = DECIMAL_PARTS * DECIMAL_BASE_LOG10;
pub const DECIMAL_BASE: usize = 10000;      // 9999 is the maximum of a digit
pub const DECIMAL_SIGN_POS: i8 = 1;         // + sign
pub const DECIMAL_SIGN_NEG: i8 = -1;        // - sign
pub const DECIMAL_MIN_EXPONENT: i8 = -128;  // min exponent value
pub const DECIMAL_MAX_EXPONENT: i8 = 127;   // max exponent value
pub const ZEROED_MANTISSA: [i16; DECIMAL_PARTS] = [0; DECIMAL_PARTS];


/// Zero.
pub const ZERO: BigFloatNum = BigFloatNum {
    m: ZEROED_MANTISSA,
    n: 0, 
    sign: DECIMAL_SIGN_POS, 
    e: 0,
};

/// One.
pub const ONE: BigFloatNum = BigFloatNum {
    m: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1000],
    n: DECIMAL_POSITIONS as i16, 
    sign: DECIMAL_SIGN_POS, 
    e: 1 - (DECIMAL_POSITIONS as i8),
};

/// Two.
pub const TWO: BigFloatNum = BigFloatNum {
    m: [0, 0, 0, 0, 0, 0, 0, 0, 0, 2000],
    n: DECIMAL_POSITIONS as i16, 
    sign: DECIMAL_SIGN_POS, 
    e: 1 - (DECIMAL_POSITIONS as i8),
};

/// Eulers number.
pub const E: BigFloatNum = BigFloatNum {
    m: [7757, 6249, 3526, 7471, 6028, 2353, 9045, 2845, 2818, 2718],
    n: DECIMAL_POSITIONS as i16, 
    sign: DECIMAL_SIGN_POS, 
    e: 1 - (DECIMAL_POSITIONS as i8),
};

/// Pi number.
pub const PI: BigFloatNum = BigFloatNum {
    m: [4197, 288, 2795, 3383, 6264, 2384, 9793, 5358, 5926, 3141],
    n: DECIMAL_POSITIONS as i16, 
    sign: DECIMAL_SIGN_POS, 
    e: 1 - (DECIMAL_POSITIONS as i8),
};

/// Largest value possible.
pub const MAX: BigFloatNum = BigFloatNum {
    m: [9999, 9999, 9999, 9999, 9999, 9999, 9999, 9999, 9999, 9999,],
    n: DECIMAL_POSITIONS as i16, 
    sign: DECIMAL_SIGN_POS, 
    e: DECIMAL_MAX_EXPONENT,
};

/// Smalles value possible.
pub const MIN: BigFloatNum = BigFloatNum {
    m: [9999, 9999, 9999, 9999, 9999, 9999, 9999, 9999, 9999, 9999,],
    n: DECIMAL_POSITIONS as i16, 
    sign: DECIMAL_SIGN_NEG, 
    e: DECIMAL_MAX_EXPONENT,
};

/// Smalles positive number.
pub const MIN_POSITIVE: BigFloatNum = BigFloatNum {
    m: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0,],
    n: 1, 
    sign: DECIMAL_SIGN_POS, 
    e: DECIMAL_MIN_EXPONENT,
};


/// Creation and number manipulation functions.
impl BigFloatNum {

    /// Return new BigFloat with value zero.
    pub fn new() -> Self {
        BigFloatNum {
            sign: DECIMAL_SIGN_POS,
            e: 0,
            n: 0,
            m: ZEROED_MANTISSA,
        }
    }
    
    /// Return BigFloat with the value of 1.
    pub fn one() -> Self {
        let mut val = Self::new();
        val.m[DECIMAL_PARTS-1] = DECIMAL_BASE as i16/10;
        val.n = DECIMAL_POSITIONS as i16;
        val.e = 1 - DECIMAL_POSITIONS as i8;
        val
    }

    /// Create a BigFloat value from a sequence of `bytes`. Each byte must represent a decimal digit.
    /// First byte is the most significant. The length of `bytes` can be any. If the length of
    /// `bytes` is greater than required, then the remaining part is ignored.
    /// If `sign` is negative, then the resulting BigFloat will be
    /// negative.
    pub fn from_bytes(bytes: &[u8], sign: i8, exponent: i8) -> BigFloatNum {
        let mut mantissa = ZEROED_MANTISSA;
        let mut n: usize = 0;
        let mut p: i16 = 1;
        let d = if bytes.len() > DECIMAL_POSITIONS { DECIMAL_POSITIONS } else { bytes.len() };
        for i in 1..d+1 {
            mantissa[n] += (bytes[d - i] % 10) as i16 * p;
            p *= 10;
            if p == DECIMAL_BASE as i16 {
                n += 1;
                p = 1;
            }
        }

        BigFloatNum {
            sign: if sign >= 0 { DECIMAL_SIGN_POS } else { DECIMAL_SIGN_NEG },
            e: exponent,
            n: Self::num_digits(&mantissa),
            m: mantissa,
        }
    }

    /// Get BigFloat's mantissa as bytes. Each byte represents a decimal digit.
    /// First byte is the most significant. The length of `bytes` can be any. If the length of
    /// `bytes` is smaller than required, then remaining part of mantissa will be omitted.
    ///
    /// The length of mantissa can be determined using `get_mantissa_len`.
    pub fn get_mantissa_bytes(&self, bytes: &mut [u8]) {
        let mut n: usize = 0;
        let mut p: i16 = 1;
        let d = if bytes.len() < self.n as usize { bytes.len() } else { self.n as usize };
        for i in 1..d+1 {
            bytes[d - i] = ((self.m[n] / p) % 10) as u8;
            p *= 10;
            if p == DECIMAL_BASE as i16 {
                n += 1;
                p = 1;
            }
        }
    }

    /// Return the number of decimal positions filled in the mantissa.
    pub fn get_mantissa_len(&self) -> usize {
        self.n as usize
    }

    /// Return true if the number is zero.
    pub fn is_zero(&self) -> bool {
        self.n == 0
    }

    /// Return true if integer part of number is zero.
    pub fn is_int_even(&self) -> bool {
        let int = self.int();
        if int.e < 0 {
            let p = int.n + int.e as i16;
            let mut d = int.m[p as usize / DECIMAL_BASE_LOG10];
            let mut i = p % DECIMAL_BASE_LOG10 as i16;
            while i > 0 {
                d /= 10;
                i -= 1;
            }
            d & 1 == 0
        } else if int.e == 0 {
            int.m[0] & 1 == 0
        } else {
            true
        }
    }

    /// Returns true if `self` is subnormal.
    pub fn is_subnormal(&self) -> bool {
        self.n < DECIMAL_POSITIONS as i16 &&
        self.e == DECIMAL_MIN_EXPONENT
    }
}