nu-command 0.75.0

Nushell's built-in commands
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
// Attribution:
// Thanks kn team https://github.com/micouy/kn

use alphanumeric_sort::compare_os_str;
use nu_protocol::ShellError;
use nu_protocol::Span;
use powierza_coefficient::powierża_coefficient;
use std::cmp::{Ord, Ordering};
use std::{
    convert::AsRef,
    ffi::{OsStr, OsString},
    fs::DirEntry,
    mem,
    path::{Component, Path, PathBuf},
};

/// A path matching an abbreviation.
///
/// Stores [`Congruence`](Congruence)'s of its ancestors, with that of the
/// closest ancestors first (so that it can be compared
/// [lexicographically](std::cmp::Ord#lexicographical-comparison).
struct Finding {
    file_name: OsString,
    path: PathBuf,
    congruence: Vec<Congruence>,
}

/// Returns an iterator over directory's children matching the abbreviation.
fn get_matching_children<'a, P>(
    path: &'a P,
    abbr: &'a Abbr,
    parent_congruence: &'a [Congruence],
) -> impl Iterator<Item = Finding> + 'a
where
    P: AsRef<Path>,
{
    let filter_map_entry = move |entry: DirEntry| {
        let file_type = entry.file_type().ok()?;

        if file_type.is_dir() || file_type.is_symlink() {
            let file_name: String = entry.file_name().into_string().ok()?;

            if let Some(congruence) = abbr.compare(&file_name) {
                let mut entry_congruence = parent_congruence.to_vec();
                entry_congruence.insert(0, congruence);

                return Some(Finding {
                    file_name: entry.file_name(),
                    congruence: entry_congruence,
                    path: entry.path(),
                });
            }
        }

        None
    };

    path.as_ref()
        .read_dir()
        .ok()
        .map(|reader| {
            reader
                .filter_map(|entry| entry.ok())
                .filter_map(filter_map_entry)
        })
        .into_iter()
        .flatten()
}

/// The `query` subcommand.
///
/// It takes two args — `--abbr` and `--exclude` (optionally). The value of
/// `--abbr` gets split into a prefix containing components like `c:/`, `/`,
/// `~/`, and dots, and [`Abbr`](Abbr)'s. If there is more than one dir matching
/// the query, the value of `--exclude` is excluded from the search.
pub fn query<P>(arg: &P, excluded: Option<PathBuf>, span: Span) -> Result<PathBuf, ShellError>
where
    P: AsRef<Path>,
{
    // If the arg is a real path and not an abbreviation, return it. It
    // prevents potential unexpected behavior due to abbreviation expansion.
    // For example, `kn` doesn't allow for any component other than `Normal` in
    // the abbreviation but the arg itself may be a valid path. `kn` should only
    // behave differently from `cd` in situations where `cd` would fail.
    if arg.as_ref().is_dir() {
        return Ok(arg.as_ref().into());
    }

    let (prefix, abbrs) = parse_arg(&arg)?;
    let start_dir = match prefix {
        Some(start_dir) => start_dir,
        None => std::env::current_dir()?,
    };

    match abbrs.as_slice() {
        [] => Ok(start_dir),
        [first_abbr, abbrs @ ..] => {
            let mut current_level =
                get_matching_children(&start_dir, first_abbr, &[]).collect::<Vec<_>>();
            let mut next_level = vec![];

            for abbr in abbrs {
                let children = current_level.iter().flat_map(|parent| {
                    get_matching_children(&parent.path, abbr, &parent.congruence)
                });

                next_level.clear();
                next_level.extend(children);

                mem::swap(&mut next_level, &mut current_level);
            }

            let cmp_findings = |finding_a: &Finding, finding_b: &Finding| {
                finding_a
                    .congruence
                    .cmp(&finding_b.congruence)
                    .then(compare_os_str(&finding_a.file_name, &finding_b.file_name))
            };

            let found_path = match excluded {
                Some(excluded) if current_level.len() > 1 => current_level
                    .into_iter()
                    .filter(|finding| finding.path != excluded)
                    .min_by(cmp_findings)
                    .map(|Finding { path, .. }| path),
                _ => current_level
                    .into_iter()
                    .min_by(cmp_findings)
                    .map(|Finding { path, .. }| path),
            };

            found_path.ok_or(ShellError::NotADirectory(span))
        }
    }
}

/// Checks if the component contains only dots and returns the equivalent number
/// of [`ParentDir`](Component::ParentDir) components if it does.
///
/// It is the number of dots, less one. For example, `...` is converted to
/// `../..`, `....` to `../../..` etc.
fn parse_dots(component: &str) -> Option<usize> {
    component
        .chars()
        .try_fold(
            0,
            |n_dots, c| if c == '.' { Some(n_dots + 1) } else { None },
        )
        .and_then(|n_dots| if n_dots > 1 { Some(n_dots - 1) } else { None })
}

/// Extracts leading components of the path that are not parts of the
/// abbreviation.
///
/// The prefix is the path where the search starts. If there is no prefix (when
/// the path consists only of normal components), the search starts in the
/// current directory, just as you'd expect. The function collects each
/// [`Prefix`](Component::Prefix), [`RootDir`](Component::RootDir),
/// [`CurDir`](Component::CurDir), and [`ParentDir`](Component::ParentDir)
/// components and stops at the first [`Normal`](Component::Normal) component
/// **unless** it only contains dots. In this case, it converts it to as many
/// [`ParentDir`](Component::ParentDir)'s as there are dots in this component,
/// less one. For example, `...` is converted to `../..`, `....` to `../../..`
/// etc.
fn extract_prefix<'a, P>(
    arg: &'a P,
) -> Result<(Option<PathBuf>, impl Iterator<Item = Component<'a>> + 'a), ShellError>
where
    P: AsRef<Path> + ?Sized + 'a,
{
    use Component::*;

    let mut components = arg.as_ref().components().peekable();
    let mut prefix: Option<PathBuf> = None;
    let mut push_to_prefix = |component: Component| match &mut prefix {
        None => prefix = Some(PathBuf::from(&component)),
        Some(prefix) => prefix.push(component),
    };
    let parse_dots_os = |component_os: &OsStr| {
        component_os
            .to_os_string()
            .into_string()
            .map_err(|_| ShellError::NonUnicodeInput)
            .map(|component| parse_dots(&component))
    };

    while let Some(component) = components.peek() {
        match component {
            Prefix(_) | RootDir | CurDir | ParentDir => push_to_prefix(*component),
            Normal(component_os) => {
                if let Some(n_dots) = parse_dots_os(component_os)? {
                    (0..n_dots).for_each(|_| push_to_prefix(ParentDir));
                } else {
                    break;
                }
            }
        }

        let _consumed = components.next();
    }

    Ok((prefix, components))
}

/// Converts each component into [`Abbr`](Abbr) without checking
/// the component's type.
///
/// This may change in the future.
fn parse_abbrs<'a, I>(components: I) -> Result<Vec<Abbr>, ShellError>
where
    I: Iterator<Item = Component<'a>> + 'a,
{
    use Component::*;

    let abbrs = components
        .into_iter()
        .map(|component| match component {
            Prefix(_) | RootDir | CurDir | ParentDir => {
                let component_string = component
                    .as_os_str()
                    .to_os_string()
                    .to_string_lossy()
                    .to_string();

                Err(ShellError::UnexpectedAbbrComponent(component_string))
            }
            Normal(component_os) => component_os
                .to_os_string()
                .into_string()
                .map_err(|_| ShellError::NonUnicodeInput)
                .map(|string| Abbr::new_sanitized(&string)),
        })
        .collect::<Result<Vec<_>, _>>()?;

    Ok(abbrs)
}

/// Parses the provided argument into a prefix and [`Abbr`](Abbr)'s.
fn parse_arg<P>(arg: &P) -> Result<(Option<PathBuf>, Vec<Abbr>), ShellError>
where
    P: AsRef<Path>,
{
    let (prefix, suffix) = extract_prefix(arg)?;
    let abbrs = parse_abbrs(suffix)?;

    Ok((prefix, abbrs))
}

#[cfg(test)]
mod test {
    use super::*;

    //     // #[cfg(any(test, doc))]
    //     // #[macro_export]
    //     // macro_rules! assert_variant {
    //     //     ($expression_in:expr , $( pat )|+ $( if $guard: expr )? $( => $expression_out:expr )? ) => {
    //     //         match $expression_in {
    //     //             $( $pattern )|+ $( if $guard )? => { $( $expression_out )? },
    //     //             variant => panic!("{:?}", variant),
    //     //         }
    //     //     };

    //     //     ($expression_in:expr , $( pat )|+ $( if $guard: expr )? $( => $expression_out:expr)? , $panic:expr) => {
    //     //         match $expression_in {
    //     //             $( $pattern )|+ $( if $guard )? => { $( $expression_out )? },
    //     //             _ => panic!($panic),
    //     //         }
    //     //     };
    //     // }

    //     /// Asserts that the expression matches the variant. Optionally returns a value.
    //     ///
    //     /// Inspired by [`std::matches`](https://doc.rust-lang.org/stable/std/macro.matches.html).
    //     ///
    //     /// # Examples
    //     ///
    //     /// ```
    //     /// # fn main() -> Option<()> {
    //     /// use kn::Congruence::*;
    //     ///
    //     /// let abbr = Abbr::new_sanitized("abcjkl");
    //     /// let coeff_1 = assert_variant!(abbr.compare("abc_jkl"), Some(Subsequence(coeff)) => coeff);
    //     /// let coeff_2 = assert_variant!(abbr.compare("ab_cj_kl"), Some(Subsequence(coeff)) => coeff);
    //     /// assert!(coeff_1 < coeff_2);
    //     /// # Ok(())
    //     /// # }
    //     /// ```
    //     #[cfg(any(test, doc))]
    //     #[macro_export]
    //     macro_rules! assert_variant {
    //     ($expression_in:expr , $( $pattern:pat )+ $( if $guard: expr )? $( => $expression_out:expr )? ) => {
    //         match $expression_in {
    //             $( $pattern )|+ $( if $guard )? => { $( $expression_out )? },
    //             variant => panic!("{:?}", variant),
    //         }
    //     };

    //     ($expression_in:expr , $( $pattern:pat )+ $( if $guard: expr )? $( => $expression_out:expr)? , $panic:expr) => {
    //         match $expression_in {
    //             $( $pattern )|+ $( if $guard )? => { $( $expression_out )? },
    //             _ => panic!($panic),
    //         }
    //     };
    // }

    //     #[test]
    //     fn test_parse_dots() {
    //         assert_variant!(parse_dots(""), None);
    //         assert_variant!(parse_dots("."), None);
    //         assert_variant!(parse_dots(".."), Some(1));
    //         assert_variant!(parse_dots("..."), Some(2));
    //         assert_variant!(parse_dots("...."), Some(3));
    //         assert_variant!(parse_dots("xyz"), None);
    //         assert_variant!(parse_dots("...dot"), None);
    //     }

    #[test]
    fn test_extract_prefix() {
        {
            let (prefix, suffix) = extract_prefix("suf/fix").unwrap();
            let suffix = suffix.collect::<PathBuf>();

            assert_eq!(prefix, None);
            assert_eq!(as_path(&suffix), as_path("suf/fix"));
        }

        {
            let (prefix, suffix) = extract_prefix("./.././suf/fix").unwrap();
            let suffix = suffix.collect::<PathBuf>();

            assert_eq!(prefix.unwrap(), as_path("./.."));
            assert_eq!(as_path(&suffix), as_path("suf/fix"));
        }

        {
            let (prefix, suffix) = extract_prefix(".../.../suf/fix").unwrap();
            let suffix = suffix.collect::<PathBuf>();

            assert_eq!(prefix.unwrap(), as_path("../../../.."));
            assert_eq!(as_path(&suffix), as_path("suf/fix"));
        }
    }

    #[test]
    fn test_parse_arg_invalid_unicode() {
        #[cfg(unix)]
        {
            use std::ffi::OsStr;
            use std::os::unix::ffi::OsStrExt;

            let source = [0x66, 0x6f, 0x80, 0x6f];
            let non_unicode_input = OsStr::from_bytes(&source[..]).to_os_string();
            let result = parse_arg(&non_unicode_input);

            assert!(result.is_err());
        }

        #[cfg(windows)]
        {
            use std::os::windows::prelude::*;

            let source = [0x0066, 0x006f, 0xd800, 0x006f];
            let os_string = OsString::from_wide(&source[..]);
            let result = parse_arg(&os_string);

            assert!(result.is_err());
        }
    }

    #[test]
    fn test_congruence_ordering() {
        assert!(Complete < Prefix);
        assert!(Complete < Subsequence(1));
        assert!(Prefix < Subsequence(1));
        assert!(Subsequence(1) < Subsequence(1000));
    }

    //     #[test]
    //     fn test_compare_abbr() {
    //         let abbr = Abbr::new_sanitized("abcjkl");

    //         assert_variant!(abbr.compare("abcjkl"), Some(Complete));
    //         assert_variant!(abbr.compare("abcjkl_"), Some(Prefix));
    //         assert_variant!(abbr.compare("_abcjkl"), Some(Subsequence(0)));
    //         assert_variant!(abbr.compare("abc_jkl"), Some(Subsequence(1)));

    //         assert_variant!(abbr.compare("xyz"), None);
    //         assert_variant!(abbr.compare(""), None);
    //     }

    //     #[test]
    //     fn test_compare_abbr_different_cases() {
    //         let abbr = Abbr::new_sanitized("AbCjKl");

    //         assert_variant!(abbr.compare("aBcJkL"), Some(Complete));
    //         assert_variant!(abbr.compare("AbcJkl_"), Some(Prefix));
    //         assert_variant!(abbr.compare("_aBcjKl"), Some(Subsequence(0)));
    //         assert_variant!(abbr.compare("abC_jkL"), Some(Subsequence(1)));
    //     }

    //     #[test]
    //     fn test_empty_abbr_empty_component() {
    //         let empty = "";

    //         let abbr = Abbr::new_sanitized(empty);
    //         assert_variant!(abbr.compare("non empty component"), None);

    //         let abbr = Abbr::new_sanitized("non empty abbr");
    //         assert_variant!(abbr.compare(empty), None);
    //     }

    #[test]
    fn test_order_paths() {
        fn sort<'a>(paths: &'a [&'a str], abbr: &str) -> Vec<&'a str> {
            let abbr = Abbr::new_sanitized(abbr);
            let mut paths = paths.to_owned();
            paths.sort_by_key(|path| abbr.compare(path).unwrap());

            paths
        }

        let paths = vec!["playground", "plotka"];
        assert_eq!(paths, sort(&paths, "pla"));

        let paths = vec!["veccentric", "vehiccles"];
        assert_eq!(paths, sort(&paths, "vecc"));
    }
}

/// Shorthand for `AsRef<Path>::as_ref(&x)`.
#[cfg(any(test, doc))]
pub fn as_path<P>(path: &P) -> &Path
where
    P: AsRef<Path> + ?Sized,
{
    path.as_ref()
}

/// A component of the user's query.
///
/// It is used in comparing and ordering of found paths. Read more in
/// [`Congruence`'s docs](Congruence).
#[derive(Debug, Clone)]
pub enum Abbr {
    /// Wildcard matches every component with congruence
    /// [`Complete`](Congruence::Complete).
    Wildcard,

    /// Literal abbreviation.
    Literal(String),
}

impl Abbr {
    /// Constructs [`Abbr::Wildcard`](Abbr::Wildcard) if the
    /// string slice is '-', otherwise constructs
    /// wrapped [`Abbr::Literal`](Abbr::Literal) with the abbreviation
    /// mapped to its ASCII lowercase equivalent.
    pub fn new_sanitized(abbr: &str) -> Self {
        if abbr == "-" {
            Self::Wildcard
        } else {
            Self::Literal(abbr.to_ascii_lowercase())
        }
    }

    /// Compares a component against the abbreviation.
    pub fn compare(&self, component: &str) -> Option<Congruence> {
        // What about characters with accents? [https://eev.ee/blog/2015/09/12/dark-corners-of-unicode/]
        let component = component.to_ascii_lowercase();

        match self {
            Self::Wildcard => Some(Congruence::Complete),
            Self::Literal(literal) => {
                if literal.is_empty() || component.is_empty() {
                    None
                } else if *literal == component {
                    Some(Congruence::Complete)
                } else if component.starts_with(literal) {
                    Some(Congruence::Prefix)
                } else {
                    powierża_coefficient(literal, &component).map(Congruence::Subsequence)
                }
            }
        }
    }
}

/// The strength of the match between an abbreviation and a component.
///
/// [`Congruence`](Congruence) is used to order path components in the following
/// way:
///
/// 1. Components are first ordered based on how well they match the
/// abbreviation — first [`Complete`](Congruence::Complete), then
/// [`Prefix`](Congruence::Prefix), then
/// [`Subsequence`](Congruence::Subsequence).
/// 2. Components with congruence [`Subsequence`](Congruence::Subsequence) are
/// ordered by their [Powierża coefficient](https://github.com/micouy/powierza-coefficient).
/// 3. If the order of two components cannot be determined based on the above, [`alphanumeric_sort`](https://docs.rs/alphanumeric-sort) is used.
///
/// Below are the results of matching components against abbreviation `abc`:
///
/// | Component   | Match strength                           |
/// |-------------|------------------------------------------|
/// | `abc`       | [`Complete`](Congruence::Complete)       |
/// | `abc___`    | [`Prefix`](Congruence::Prefix)           |
/// | `_a_b_c_`   | [`Subsequence`](Congruence::Subsequence) |
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Congruence {
    /// Either the abbreviation and the component are the same or the
    /// abbreviation is a wildcard.
    Complete,

    /// The abbreviation is a prefix of the component.
    Prefix,

    /// The abbreviation's characters form a subsequence of the component's
    /// characters. The field contains the Powierża coefficient of the pair of
    /// strings.
    Subsequence(u32),
}

use Congruence::*;

impl PartialOrd for Congruence {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(Ord::cmp(self, other))
    }
}

impl Ord for Congruence {
    fn cmp(&self, other: &Self) -> Ordering {
        use Ordering::*;

        match (self, other) {
            (Complete, Complete) => Equal,
            (Complete, Prefix) => Less,
            (Complete, Subsequence(_)) => Less,

            (Prefix, Complete) => Greater,
            (Prefix, Prefix) => Equal,
            (Prefix, Subsequence(_)) => Less,

            (Subsequence(_), Complete) => Greater,
            (Subsequence(_), Prefix) => Greater,
            (Subsequence(dist_a), Subsequence(dist_b)) => dist_a.cmp(dist_b),
        }
    }
}