1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
use crate::completions::{
CommandCompletion, Completer, CompletionOptions, CustomCompletion, DirectoryCompletion,
DotNuCompletion, FileCompletion, FlagCompletion, MatchAlgorithm, VariableCompletion,
};
use nu_parser::{flatten_expression, parse, FlatShape};
use nu_protocol::{
engine::{EngineState, Stack, StateWorkingSet},
Span,
};
use reedline::{Completer as ReedlineCompleter, Suggestion};
use std::str;
use std::sync::Arc;
#[derive(Clone)]
pub struct NuCompleter {
engine_state: Arc<EngineState>,
stack: Stack,
}
impl NuCompleter {
pub fn new(engine_state: Arc<EngineState>, stack: Stack) -> Self {
Self {
engine_state,
stack,
}
}
fn process_completion<T: Completer>(
&self,
completer: &mut T,
working_set: &StateWorkingSet,
prefix: Vec<u8>,
new_span: Span,
offset: usize,
pos: usize,
) -> Vec<Suggestion> {
let config = self.engine_state.get_config();
let mut options = CompletionOptions {
case_sensitive: config.case_sensitive_completions,
..Default::default()
};
if config.completion_algorithm == "fuzzy" {
options.match_algorithm = MatchAlgorithm::Fuzzy;
}
let mut suggestions =
completer.fetch(working_set, prefix.clone(), new_span, offset, pos, &options);
suggestions = completer.sort(suggestions, prefix);
suggestions
}
fn completion_helper(&mut self, line: &str, pos: usize) -> Vec<Suggestion> {
let mut working_set = StateWorkingSet::new(&self.engine_state);
let offset = working_set.next_span_start();
let (mut new_line, alias_offset) = try_find_alias(line.as_bytes(), &working_set);
let initial_line = line.to_string();
new_line.push(b'a');
let pos = offset + pos;
let (output, _err) = parse(&mut working_set, Some("completer"), &new_line, false, &[]);
for pipeline in output.pipelines.into_iter() {
for expr in pipeline.expressions {
let flattened: Vec<_> = flatten_expression(&working_set, &expr);
let span_offset: usize = alias_offset.iter().sum();
for (flat_idx, flat) in flattened.iter().enumerate() {
if pos + span_offset >= flat.0.start && pos + span_offset < flat.0.end {
let most_left_var =
most_left_variable(flat_idx, &working_set, flattened.clone());
let new_span = if flat_idx == 0 {
Span {
start: flat.0.start,
end: flat.0.end - 1 - span_offset,
}
} else {
Span {
start: flat.0.start - span_offset,
end: flat.0.end - 1 - span_offset,
}
};
let mut prefix = working_set.get_span_contents(flat.0).to_vec();
prefix.remove(pos - (flat.0.start - span_offset));
if prefix.starts_with(b"$") || most_left_var.is_some() {
let mut completer = VariableCompletion::new(
self.engine_state.clone(),
self.stack.clone(),
most_left_var.unwrap_or((vec![], vec![])),
);
return self.process_completion(
&mut completer,
&working_set,
prefix,
new_span,
offset,
pos,
);
}
if prefix.starts_with(b"-") {
let mut completer = FlagCompletion::new(expr);
return self.process_completion(
&mut completer,
&working_set,
prefix,
new_span,
offset,
pos,
);
}
if flat_idx > 0 {
if let Some(previous_expr) = flattened.get(flat_idx - 1) {
let prev_expr_str =
working_set.get_span_contents(previous_expr.0).to_vec();
if prev_expr_str == b"use" || prev_expr_str == b"source" {
let mut completer =
DotNuCompletion::new(self.engine_state.clone());
return self.process_completion(
&mut completer,
&working_set,
prefix,
new_span,
offset,
pos,
);
} else if prev_expr_str == b"ls" {
let mut completer =
FileCompletion::new(self.engine_state.clone());
return self.process_completion(
&mut completer,
&working_set,
prefix,
new_span,
offset,
pos,
);
}
}
}
match &flat.1 {
FlatShape::Custom(decl_id) => {
let mut completer = CustomCompletion::new(
self.engine_state.clone(),
self.stack.clone(),
*decl_id,
initial_line,
);
return self.process_completion(
&mut completer,
&working_set,
prefix,
new_span,
offset,
pos,
);
}
FlatShape::Directory => {
let mut completer =
DirectoryCompletion::new(self.engine_state.clone());
return self.process_completion(
&mut completer,
&working_set,
prefix,
new_span,
offset,
pos,
);
}
FlatShape::Filepath | FlatShape::GlobPattern => {
let mut completer = FileCompletion::new(self.engine_state.clone());
return self.process_completion(
&mut completer,
&working_set,
prefix,
new_span,
offset,
pos,
);
}
flat_shape => {
let mut completer = CommandCompletion::new(
self.engine_state.clone(),
&working_set,
flattened.clone(),
flat_shape.clone(),
);
let out: Vec<_> = self.process_completion(
&mut completer,
&working_set,
prefix.clone(),
new_span,
offset,
pos,
);
if out.is_empty() {
let mut completer =
FileCompletion::new(self.engine_state.clone());
return self.process_completion(
&mut completer,
&working_set,
prefix,
new_span,
offset,
pos,
);
}
return out;
}
};
}
}
}
}
return vec![];
}
}
impl ReedlineCompleter for NuCompleter {
fn complete(&mut self, line: &str, pos: usize) -> Vec<Suggestion> {
self.completion_helper(line, pos)
}
}
type MatchedAlias = Vec<(Vec<u8>, Vec<u8>)>;
fn try_find_alias(line: &[u8], working_set: &StateWorkingSet) -> (Vec<u8>, Vec<usize>) {
let mut alias_offset = vec![];
let mut output = vec![];
if let Some(matched_alias) = search_alias(line, working_set) {
let mut lens = matched_alias.len();
for (input_vec, line_vec) in matched_alias {
alias_offset.push(line_vec.len() - input_vec.len());
output.extend(line_vec);
if lens > 1 {
output.push(b' ');
lens -= 1;
}
}
if !line.is_empty() {
let last = line.last().expect("input is empty");
if last == &b' ' {
output.push(b' ');
}
}
} else {
output = line.to_vec();
}
(output, alias_offset)
}
fn search_alias(input: &[u8], working_set: &StateWorkingSet) -> Option<MatchedAlias> {
let mut vec_names = vec![];
let mut vec_alias = vec![];
let mut pos = 0;
let mut is_alias = false;
for (index, character) in input.iter().enumerate() {
if *character == b' ' {
let range = &input[pos..index];
vec_names.push(range.to_owned());
pos = index + 1;
}
}
if pos < input.len() {
vec_names.push((&input[pos..]).to_owned());
}
for name in &vec_names {
if let Some(alias_id) = working_set.find_alias(&name[..]) {
let alias_span = working_set.get_alias(alias_id);
let mut span_vec = vec![];
is_alias = true;
for alias in alias_span {
let name = working_set.get_span_contents(*alias);
if !name.is_empty() {
span_vec.push(name);
}
}
let full_aliases = span_vec.join(&[b' '][..]);
vec_alias.push(full_aliases);
} else {
vec_alias.push(name.to_owned());
}
}
if is_alias {
let output = vec_names.into_iter().zip(vec_alias).collect();
Some(output)
} else {
None
}
}
fn most_left_variable(
idx: usize,
working_set: &StateWorkingSet<'_>,
flattened: Vec<(Span, FlatShape)>,
) -> Option<(Vec<u8>, Vec<Vec<u8>>)> {
let mut rev = flattened;
rev.truncate(idx);
rev = rev.into_iter().rev().collect();
let mut variables_found: Vec<Vec<u8>> = vec![];
let mut found_var = false;
for item in rev.clone() {
let result = working_set.get_span_contents(item.0).to_vec();
match item.1 {
FlatShape::Variable => {
variables_found.push(result);
found_var = true;
break;
}
FlatShape::String => {
variables_found.push(result);
}
_ => {
break;
}
}
}
if !found_var {
return None;
}
variables_found = variables_found.into_iter().rev().collect();
let var = variables_found.first().unwrap_or(&vec![]).to_vec();
let sublevels: Vec<Vec<u8>> = variables_found.into_iter().skip(1).collect();
Some((var, sublevels))
}