1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
use crate::config::subnet::IpSubnet;
/// One part of a BitTree
#[derive(Debug, Copy, Clone, Default, PartialEq, Eq)]
struct TreeNode {
// Where in the array the child nodes of this
// node are located. A child node is only
// generated if the symbol cannot be used to
// make a final decision at this level
child_offset: u32,
inset: u16,
outset: u16,
}
#[derive(Debug, Clone, PartialEq, Eq)]
/// BitTree is a Trie on 128 bit integers encoding
/// which integers are part of the set.
///
/// It matches the integer a 4-bit segment at a time
/// recording at each level whether for a given symbol
/// all integers with the prefix extended with that
/// symbol are either in or outside of the set.
struct BitTree {
nodes: Vec<TreeNode>,
}
const fn top_nibble(v: u128) -> u8 {
((v >> 124) & 0xF) as u8
}
/// retain only the top `128 - len` bits
const fn apply_mask(val: u128, len: u8) -> u128 {
match u128::MAX.checked_shl((128 - len) as u32) {
Some(mask) => val & mask,
None => 0,
}
}
impl BitTree {
/// Lookup whether a given value is in the set encoded in this BitTree
/// Complexity is O(log(l)), where l is the length of the longest
/// prefix in the set.
fn lookup(&self, mut val: u128) -> bool {
let mut node = &self.nodes[0];
loop {
// extract the current symbol as bit and see if we know the answer immediately.
// (example: symbol 1 maps to 0x2, symbol 5 maps to 0x10)
let cur = 1 << top_nibble(val);
if node.inset & cur != 0 {
return true;
}
if node.outset & cur != 0 {
return false;
}
// no decision, shift to next symbol
val <<= 4;
// To calculate the child index we need to know how many symbols smaller
// than our symbol are not decided here. We do this by generating the bitmap
// of symbols neither in in or out, then masking out all symbols >=cur
// and finaly counting how many are left.
let next_idx =
node.child_offset + (!(node.inset | node.outset) & (cur - 1)).count_ones();
node = &self.nodes[next_idx as usize];
}
}
/// Create a BitTree from the given prefixes. Complexity is O(n*log(l)),
/// where n is the number of prefixes, and l the length of the longest
/// prefix.
fn create(data: &mut [(u128, u8)]) -> Self {
// Ensure values only have 1s in significant positions
for (val, len) in data.iter_mut() {
*val = apply_mask(*val, *len);
}
// Ensure values are sorted by value and then by length
data.sort();
let mut result = BitTree {
nodes: vec![TreeNode::default()],
};
result.fill_node(data, 0);
result
}
/// Create the substructure for a node, recursively.
/// Max recursion depth is maximum value of data[i].1/4
/// for any i
fn fill_node(&mut self, mut data: &mut [(u128, u8)], node_index: usize) {
// distribute the data into 16 4-bit buckets
let mut counts = [0; 16];
for (val, _) in data.iter() {
counts[top_nibble(*val) as usize] += 1;
}
// Actually split into the relevant subsegments, relies on the input being sorted.
let mut subsegments: [&mut [(u128, u8)]; 16] = Default::default();
for (i, start) in counts.iter().enumerate() {
(subsegments[i], data) = data.split_at_mut(*start);
}
// Fill in node
let child_offset = self.nodes.len();
let node = &mut self.nodes[node_index];
node.child_offset = child_offset as u32;
for (i, segment) in subsegments.iter().enumerate() {
match segment.first().copied() {
// Probably empty, unless covered earlier, but we fix that later
None => node.outset |= 1 << i,
// Definetly covered, mark all that is needed
// Note that due to sorting order, len here
// is guaranteed to be largest amongst all
// parts of the segment
Some((_, len)) if len <= 4 => {
// mark ALL parts of node covered by the segment as in the set.
for j in 0..(1 << (4 - len)) {
node.inset |= 1 << (i + j as usize)
}
}
// May be covered by a the union of all its parts, we need to check
// for that. Otherwise it is undecided
Some(_) => {
let offset = (i as u128) << 124;
let mut last = 0;
for part in segment.iter() {
if part.0 - offset <= last {
last = u128::max(last, part.0 - offset + (1_u128 << (128 - part.1)));
}
}
if last >= (1 << 124) {
// All parts together cover the segment, so mark as in
node.inset |= 1 << i;
}
}
}
}
// the outset should not contain anything that is included in the inset
// (this can happen due to overcoverage)
node.outset &= !node.inset;
// bitmap of subsegments for which we have a decision
let known_bitmap = node.inset | node.outset;
// allocate additional empty nodes
let unknown_count = known_bitmap.count_zeros() as usize;
self.nodes
.extend(std::iter::repeat(TreeNode::default()).take(unknown_count));
// Create children for segments undecided at this level.
let mut child_offset = child_offset;
for (i, segment) in subsegments.iter_mut().enumerate() {
if known_bitmap & (1 << i) != 0 {
continue; // no child needed
}
// we've taken care of the top nibble,
// so shift everything over and do a recursive call
for (val, len) in segment.iter_mut() {
*val <<= 4;
*len -= 4;
}
self.fill_node(segment, child_offset);
child_offset += 1;
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct IpFilter {
ipv4_filter: BitTree,
ipv6_filter: BitTree,
}
impl IpFilter {
/// Create a filter from a list of subnets
/// Complexity: O(n) with n length of list
pub fn new(subnets: &[IpSubnet]) -> Self {
let mut ipv4list = Vec::new();
let mut ipv6list = Vec::new();
for subnet in subnets {
match subnet.addr {
IpAddr::V4(addr) => ipv4list.push((
(u32::from_be_bytes(addr.octets()) as u128) << 96,
subnet.mask,
)),
IpAddr::V6(addr) => {
ipv6list.push((u128::from_be_bytes(addr.octets()), subnet.mask))
}
}
}
IpFilter {
ipv4_filter: BitTree::create(ipv4list.as_mut_slice()),
ipv6_filter: BitTree::create(ipv6list.as_mut_slice()),
}
}
pub fn all() -> Self {
let mut temp_v4 = [(0, 0)];
let mut temp_v6 = [(0, 0)];
IpFilter {
ipv4_filter: BitTree::create(&mut temp_v4),
ipv6_filter: BitTree::create(&mut temp_v6),
}
}
pub fn none() -> Self {
let mut temp_v4 = [];
let mut temp_v6 = [];
IpFilter {
ipv4_filter: BitTree::create(&mut temp_v4),
ipv6_filter: BitTree::create(&mut temp_v6),
}
}
/// Check whether a given ip address is contained in the filter.
/// Complexity: O(1)
pub fn is_in(&self, addr: &IpAddr) -> bool {
match addr {
IpAddr::V4(addr) => self.is_in4(addr),
IpAddr::V6(addr) => self.is_in6(addr),
}
}
fn is_in4(&self, addr: &Ipv4Addr) -> bool {
self.ipv4_filter
.lookup((u32::from_be_bytes(addr.octets()) as u128) << 96)
}
fn is_in6(&self, addr: &Ipv6Addr) -> bool {
self.ipv6_filter.lookup(u128::from_be_bytes(addr.octets()))
}
}
//#[cfg(fuzz)]
pub mod fuzz {
use super::*;
fn contains(subnet: &IpSubnet, addr: &IpAddr) -> bool {
match (subnet.addr, addr) {
(IpAddr::V4(net), IpAddr::V4(addr)) => {
let net = u32::from_be_bytes(net.octets());
let addr = u32::from_be_bytes(addr.octets());
let mask = 0xFFFFFFFF_u32
.checked_shl((32 - subnet.mask) as u32)
.unwrap_or(0);
(net & mask) == (addr & mask)
}
(IpAddr::V6(net), IpAddr::V6(addr)) => {
let net = u128::from_be_bytes(net.octets());
let addr = u128::from_be_bytes(addr.octets());
let mask = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF_u128
.checked_shl((128 - subnet.mask) as u32)
.unwrap_or(0);
(net & mask) == (addr & mask)
}
_ => false,
}
}
fn any_contains(subnets: &[IpSubnet], addr: &IpAddr) -> bool {
for net in subnets {
if contains(net, addr) {
return true;
}
}
false
}
pub fn fuzz_ipfilter(nets: &[IpSubnet], addr: &[IpAddr]) {
let filter = IpFilter::new(nets);
for addr in addr {
assert_eq!(filter.is_in(addr), any_contains(nets, addr));
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_bittree() {
let mut data = [
(0x10 << 120, 4),
(0x20 << 120, 3),
(0x43 << 120, 8),
(0x82 << 120, 7),
];
let tree = BitTree::create(&mut data);
assert!(tree.lookup(0x11 << 120));
assert!(!tree.lookup(0x40 << 120));
assert!(tree.lookup(0x30 << 120));
assert!(tree.lookup(0x43 << 120));
assert!(!tree.lookup(0xC4 << 120));
assert!(tree.lookup(0x82 << 120));
assert!(tree.lookup(0x83 << 120));
assert!(!tree.lookup(0x81 << 120));
}
#[test]
fn test_filter() {
let filter = IpFilter::new(&[
"127.0.0.0/24".parse().unwrap(),
"::FFFF:0000:0000/96".parse().unwrap(),
]);
assert!(filter.is_in(&"127.0.0.1".parse().unwrap()));
assert!(!filter.is_in(&"192.168.1.1".parse().unwrap()));
assert!(filter.is_in(&"::FFFF:ABCD:0123".parse().unwrap()));
assert!(!filter.is_in(&"::FEEF:ABCD:0123".parse().unwrap()));
}
#[test]
fn test_subnet_edgecases() {
let filter = IpFilter::new(&["0.0.0.0/0".parse().unwrap(), "::/0".parse().unwrap()]);
assert!(filter.is_in(&"0.0.0.0".parse().unwrap()));
assert!(filter.is_in(&"255.255.255.255".parse().unwrap()));
assert!(filter.is_in(&"::".parse().unwrap()));
assert!(filter.is_in(&"FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF".parse().unwrap()));
let filter = IpFilter::new(&[
"1.2.3.4/32".parse().unwrap(),
"10:32:54:76:98:BA:DC:FE/128".parse().unwrap(),
]);
assert!(filter.is_in(&"1.2.3.4".parse().unwrap()));
assert!(!filter.is_in(&"1.2.3.5".parse().unwrap()));
assert!(filter.is_in(&"10:32:54:76:98:BA:DC:FE".parse().unwrap()));
assert!(!filter.is_in(&"10:32:54:76:98:BA:DC:FF".parse().unwrap()));
}
}