nsq-async-rs
 

Read this in other languages: English, 简体中文
A high-performance, reliable NSQ client library written in Rust. This project provides similar functionality and interfaces to the official go-nsq implementation within the Rust ecosystem.
Features
- ✨ Asynchronous I/O support (based on tokio)
- 🚀 High-performance message processing
- 🔄 Automatic reconnection and error retry
- 🔍 Support for nsqlookupd service discovery
- 🛡️ Graceful shutdown support
- 📊 Built-in message statistics
- ⚡ Delayed publishing support
- 📦 Batch publishing support
- 🔀 Concurrent message processing
- 💫 Feature parity with the official go-nsq client
Installation
Add the following dependency to your Cargo.toml file:
[dependencies]
nsq-async-rs = "0.1.1"
Quick Start
Basic Consumer Example
use nsq_async_rs::consumer::{Consumer, ConsumerConfig, Handler};
use nsq_async_rs::error::Result;
use nsq_async_rs::protocol::Message;
#[derive(Default)]
struct MessageHandler;
#[async_trait::async_trait]
impl Handler for MessageHandler {
    async fn handle_message(&self, message: Message) -> Result<()> {
        println!("Received message: {:?}", String::from_utf8_lossy(&message.body));
        Ok(())
    }
}
#[tokio::main]
async fn main() -> Result<()> {
    let config = ConsumerConfig::default();
    let consumer = Consumer::new(
        "test_topic".to_string(),
        "test_channel".to_string(),
        config,
        MessageHandler::default(),
    )?;
    consumer.connect_to_nsqlookupd("http://127.0.0.1:4161".to_string()).await?;
    consumer.start().await?;
    tokio::signal::ctrl_c().await?;
    consumer.stop().await?;
    Ok(())
}
Concurrent Consumer Example
use async_trait::async_trait;
use log::{error, info};
use nsq_async_rs::consumer::{Consumer, ConsumerConfig, Handler};
use nsq_async_rs::error::Result;
use nsq_async_rs::protocol::Message;
use std::sync::Arc;
use std::time::Duration;
use tokio::sync::{mpsc, Mutex};
struct ConcurrentMessageHandler {
    worker_count: usize,
    sender: Arc<Mutex<mpsc::Sender<Message>>>,
}
impl ConcurrentMessageHandler {
    pub fn new(worker_count: usize) -> Self {
                let (tx, rx) = mpsc::channel(worker_count * 10);
        let sender = Arc::new(Mutex::new(tx));
        let receiver = Arc::new(Mutex::new(rx));
        let handler = Self {
            worker_count,
            sender,
        };
                handler.start_workers(receiver);
        handler
    }
    fn start_workers(&self, receiver: Arc<Mutex<mpsc::Receiver<Message>>>) {
        for i in 0..self.worker_count {
            let worker_id = i + 1;
            let rx = receiver.clone();
            tokio::spawn(async move {
                info!("Worker {} started", worker_id);
                loop {
                                        let msg = {
                        let mut rx_guard = rx.lock().await;
                        match rx_guard.recv().await {
                            Some(msg) => msg,
                            None => break,
                        }
                    };
                                        let msg_id = String::from_utf8_lossy(&msg.id).to_string();
                    info!("Worker {} processing message: {}", worker_id, msg_id);
                    
                                        
                    info!("Worker {} completed message: {}", worker_id, msg_id);
                }
            });
        }
    }
}
#[async_trait]
impl Handler for ConcurrentMessageHandler {
    async fn handle_message(&self, message: Message) -> Result<()> {
        let msg_id = String::from_utf8_lossy(&message.id).to_string();
        let sender = self.sender.lock().await;
                let send_result = sender.try_send(message.clone());
        match send_result {
            Ok(_) => {
                info!("Message sent to worker channel: ID={}", msg_id);
            }
            Err(mpsc::error::TrySendError::Full(msg)) => {
                                if let Err(e) = sender.send(msg).await {
                    error!("Failed to send message to worker channel: {}", e);
                    return Err(nsq_async_rs::error::Error::Other(e.to_string()));
                }
            }
            Err(mpsc::error::TrySendError::Closed(_)) => {
                error!("Worker channel closed: ID={}", msg_id);
                return Err(nsq_async_rs::error::Error::Other("Worker channel closed".into()));
            }
        }
        Ok(())
    }
}
#[tokio::main]
async fn main() -> Result<()> {
        let config = ConsumerConfig {
        max_in_flight: 100,         max_attempts: 5,
                ..Default::default()
    };
        let handler = ConcurrentMessageHandler::new(20);
        let consumer = Consumer::new(
        "test_topic".to_string(),
        "test_channel".to_string(),
        config,
        handler,
    )?;
    consumer.connect_to_nsqlookupd("http://127.0.0.1:4161".to_string()).await?;
    consumer.start().await?;
    tokio::signal::ctrl_c().await?;
    consumer.stop().await?;
    Ok(())
}
Basic Producer Example
use nsq_async_rs::producer::Producer;
use nsq_async_rs::error::Result;
#[tokio::main]
async fn main() -> Result<()> {
    let producer = Producer::connect("127.0.0.1:4150").await?;
    
    producer.publish("test_topic", "Hello, NSQ!".as_bytes()).await?;
    Ok(())
}
Batch Publishing Example
use chrono::Local;
use nsq_async_rs::producer::{new_producer, ProducerConfig};
use std::error::Error;
use std::time::Instant;
#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
        let mut config = ProducerConfig::default();
    config.nsqd_addresses = vec!["127.0.0.1:4150".to_string()];
        let producer = new_producer(config);
    let topic = "test_topic";
    
        let mut messages = vec![];
    for i in 0..100 {
        messages.push(format!(
            "Message #{},at:{}",
            i + 1,
            Local::now().to_string()
        ));
    }
        let start = Instant::now();
    producer.publish_multi(topic, messages).await?;
    let elapsed = start.elapsed();
    println!("Published 100 messages in {:?}", elapsed);
    println!("Average per message: {:?}", elapsed / 100);
    Ok(())
}
Configuration Options
Consumer Configuration
ConsumerConfig {
    max_in_flight: 100,                       max_attempts: 5,                           dial_timeout: Duration::from_secs(1),      read_timeout: Duration::from_secs(60),     write_timeout: Duration::from_secs(1),     lookup_poll_interval: Duration::from_secs(60),
    lookup_poll_jitter: 0.3,
    max_requeue_delay: Duration::from_secs(15 * 60),
    default_requeue_delay: Duration::from_secs(90),
    shutdown_timeout: Duration::from_secs(30),
    backoff_strategy: true,                }
Advanced Features
Delayed Publishing
producer.publish_with_delay("test_topic", "Delayed message".as_bytes(), Duration::from_secs(60)).await?;
Batch Publishing
let messages = vec![
    "Message 1".as_bytes().to_vec(),
    "Message 2".as_bytes().to_vec(),
];
producer.publish_multiple("test_topic", messages).await?;
Error Handling
This library uses thiserror to provide detailed error types, including:
- Connection errors
- Protocol errors
- Timeout errors
- Message handling errors
- Configuration errors
Connection Pool
nsq-async-rs includes a built-in connection pool implementation that efficiently manages and reuses NSQ connections:
let pool_config = ConnectionPoolConfig {
    max_connections_per_host: 10,
    max_idle_time: Duration::from_secs(60),
    health_check_interval: Duration::from_secs(30),
    };
let pool = create_connection_pool(pool_config);
let producer = new_producer(producer_config).with_connection_pool(pool);
Contributing
Contributions are welcome! Please feel free to submit issues and pull requests.
License
MIT License
Implementation Notes
This project was designed and implemented with reference to NSQ's official Go client library go-nsq, including:
- Message processing flow
- Connection management mechanisms
- Error handling strategies
- Configuration parameter design
- Graceful shutdown mechanism
While maintaining functional parity with go-nsq, we've fully leveraged Rust language features to provide:
- Stricter type safety
- Asynchronous support based on tokio
- Rust-style error handling
- Improved memory safety guarantees