1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
use std::{
    cell::RefCell,
    fmt, fs,
    fs::File,
    io::prelude::*,
    io::ErrorKind,
    ops::{Deref, DerefMut},
    rc::Rc,
};

use crate::cpu_params::CpuParams;
use crate::layers::*;
use crate::models::pb::PbSequentialModel;
use crate::models::*;
use crate::optimizers::*;
use crate::util::*;

use prost::Message;
use serde::{Deserialize, Deserializer, Serialize, Serializer};

use log::{debug, error, info};

use ocl::flags::{CommandQueueProperties, MapFlags, MemFlags};
use ocl::{Buffer, Context, Device, Event, Kernel, Platform, Program, Queue, Result as OclResult};

use crate::layer_fabric::*;
use crate::layers_storage::*;

pub struct SequentialOcl {
    layers: Vec<Box<dyn AbstractLayerOcl>>,
    batch_size: usize,
    ocl_ctx: Context,
    ocl_queue: Queue,
    optim: Box<dyn OptimizerOcl>,
}

impl SequentialOcl {
    pub fn new() -> Result<Self, Box<dyn Error>> {
        let platform = Platform::default();
        info!("[OCL] Platform is {}", platform.name()?);

        let device = Device::first(&platform)?;
        info!("[OCL] Device is {} - {}", device.vendor()?, device.name()?);

        let context = Context::builder()
            .platform(platform)
            .devices(device)
            .build()?;

        let kern_queue = Queue::new(&context, device, None)?;

        Ok(Self {
            layers: Vec::new(),
            batch_size: 1,
            ocl_ctx: context,
            ocl_queue: kern_queue.clone(),
            optim: Box::new(OptimizerOclRms::new(0.01, kern_queue.clone())),
        })
    }

    pub fn new_simple(net_cfg: &Vec<usize>) -> Self {
        let mut mdl = SequentialOcl::new().unwrap();

        for (idx, i) in net_cfg.iter().enumerate() {
            if idx == 0 {
                mdl.add_layer(Box::new(InputLayerOcl::new(*i)));
                continue;
            }

            if idx == net_cfg.len() - 1 {
                mdl.add_layer(Box::new(EuclideanLossLayerOcl::new(*i)));
                continue;
            }

            mdl.add_layer(Box::new(FcLayerOcl::new(*i, OclActivationFunc::Sigmoid)));
        }

        mdl.init_layers();

        mdl
    }

    pub fn from_file(filepath: &str) -> Result<Self, Box<dyn Error>> {
        let cfg_file = File::open(filepath)?;
        let mdl: SequentialOcl = serde_yaml::from_reader(cfg_file)?;
        Ok(mdl)
    }

    pub fn to_file(&self, filepath: &str) -> Result<(), Box<dyn Error>> {
        let yaml_str_result = serde_yaml::to_string(&self);

        let mut output = File::create(filepath)?;

        match yaml_str_result {
            Ok(yaml_str) => {
                output.write_all(yaml_str.as_bytes())?;
            }
            Err(x) => {
                error!("Error (serde-yaml) serializing net layers !!!");
                return Err(Box::new(std::io::Error::new(ErrorKind::Other, x)));
            }
        }

        Ok(())
    }

    pub fn add_layer(&mut self, l: Box<dyn AbstractLayerOcl>) {
        self.layers.push(l);
    }

    pub fn init_layers(&mut self) {
        let mut prev_size = 0;

        for (idx, l) in self.layers.iter_mut().enumerate() {
            if idx == 0 {
                prev_size = l.size();
                l.init_ocl(
                    &self.ocl_ctx,
                    self.ocl_ctx.devices().first().unwrap().clone(),
                    self.ocl_queue.clone(),
                )
                .expect("Input layer init ocl failure");
                continue;
            }

            l.init_ocl(
                &self.ocl_ctx,
                self.ocl_ctx.devices().first().unwrap().clone(),
                self.ocl_queue.clone(),
            )
            .expect("Init ocl failure");

            l.set_input_shape(&[prev_size]);

            prev_size = l.size();
        }
    }

    fn init_layers_but_weights(&mut self) {
        let mut prev_size = 0;

        for (idx, l) in self.layers.iter_mut().enumerate() {
            if idx == 0 {
                prev_size = l.size();
                l.init_ocl(
                    &self.ocl_ctx,
                    self.ocl_ctx.devices().first().unwrap().clone(),
                    self.ocl_queue.clone(),
                )
                .expect("Input layer init ocl failure");
                continue;
            }

            l.init_ocl(
                &self.ocl_ctx,
                self.ocl_ctx.devices().first().unwrap().clone(),
                self.ocl_queue.clone(),
            )
            .expect("Init ocl failure");

            // Can't use the same buffers for validation model, we need to copy weights buffer cause of
            // https://registry.khronos.org/OpenCL/sdk/1.2/docs/man/xhtml/clSetKernelArg.html#notes
            let train_mdl_params = l.ocl_params().unwrap();
            let mut new_mdl_params = l.ocl_params().unwrap();

            l.set_input_shape(&[prev_size]);

            for t in l.trainable_bufs().0.iter() {
                let train_mdl_buf = train_mdl_params.get_buf(*t);
                let train_buf_shape = train_mdl_buf.1;
                let train_buf_bor = train_mdl_buf.0.borrow();

                let mut vec_buf = vec![0.0; train_buf_bor.len()];

                train_buf_bor
                    .read(&mut vec_buf)
                    .enq()
                    .expect("Failed to read train model weights");

                let new_mdl_buf = Rc::new(RefCell::new(
                    Buffer::builder()
                        .queue(self.ocl_queue.clone())
                        .flags(MemFlags::new().read_write())
                        .len(vec_buf.len())
                        .copy_host_slice(vec_buf.as_slice())
                        .build()
                        .expect("Failed to copy buffer"),
                ));

                new_mdl_params.insert_buf(
                    *t,
                    new_mdl_buf,
                    train_buf_shape
                );
            }

           l.set_ocl_params(new_mdl_params);

            prev_size = l.size();
        }
    }

    pub fn set_optim(&mut self, opt: Box<dyn OptimizerOcl>) {
        self.optim = opt;
    }

    pub fn queue(&self) -> Queue {
        self.ocl_queue.clone()
    }
}

impl Model for SequentialOcl {
    fn feedforward(&mut self, train_data: Array2D) {
        let mut out = None;

        // for the first(input) layer
        {
            let l_first = self.layers.first_mut().unwrap();
            let result_out = l_first.forward_input_ocl(train_data);

            match result_out {
                Err(_reason) => {
                    return;
                }
                Ok(val) => {
                    out = Some(val);
                }
            }
        }

        for l in self.layers.iter_mut().skip(1) {
            let result_out = l.forward_ocl(out.unwrap());

            match result_out {
                Err(_reason) => {
                    return;
                }
                Ok(val) => {
                    out = Some(val);
                }
            };
        }
    }

    fn backpropagate(&mut self, expected: Array2D) {
        let layers_len = self.layers.len();

        // for the last layer
        {
            let prev_out = self.layers[layers_len - 2].ocl_params();

            let last_layer_idx = layers_len - 1;

            let result_out =
                self.layers[last_layer_idx].backward_output_ocl(vec![prev_out.unwrap()], expected);

            match result_out {
                Err(_reason) => {
                    return;
                }
                Ok(_val) => {
                    //out = Some(val);
                }
            }
        }

        // TODO : refactor below
        for idx in 1..layers_len {
            if idx == layers_len - 1 {
                continue;
            }

            let prev_out = self.layers[layers_len - 2 - idx].ocl_params();
            let next_out = self.layers[layers_len - idx].ocl_params();

            let layer_idx = layers_len - 1 - idx;

            let result_out = self.layers[layer_idx]
                .backward_ocl(vec![prev_out.unwrap()], vec![next_out.unwrap()]);

            match result_out {
                Err(_reason) => {
                    return;
                }
                Ok(_val) => {}
            }
        }
    }

    fn optimize(&mut self) {
        for l in self.layers.iter_mut() {
            self.optim
                .optimize_ocl_params(l.ocl_params().unwrap(), l.trainable_bufs());
        }
    }

    fn optimizer(&self) -> &Box<dyn WithParams> {
        // https://github.com/rust-lang/rust/issues/65991
        unsafe {
            let out =
                std::mem::transmute::<&Box<dyn OptimizerOcl>, &Box<dyn WithParams>>(&self.optim);
            return out;
        }
    }

    fn optimizer_mut(&mut self) -> &mut Box<dyn WithParams> {
        // https://github.com/rust-lang/rust/issues/65991
        unsafe {
            let out = std::mem::transmute::<&mut Box<dyn OptimizerOcl>, &mut Box<dyn WithParams>>(
                &mut self.optim,
            );
            return out;
        }
    }

    fn model_type(&self) -> &str {
        "mdl_sequential_ocl"
    }

    fn output_params(&self) -> CpuParams {
        let out_layer = self.layers.last().expect("Couldn't get output layer");

        let ocl_params = out_layer.ocl_params().unwrap();

        let cpu_lp = out_layer.cpu_params().unwrap();
        let cpu_output = cpu_lp.get_2d_buf_t(TypeBuffer::Output);
        let mut cpu_output = cpu_output.borrow_mut();

        let cpu_neu_grad = cpu_lp.get_2d_buf_t(TypeBuffer::NeuGrad);
        let mut cpu_neu_grad = cpu_neu_grad.borrow_mut();

        // Fetch data from OCL Buffer to cpu memory
        let ocl_params_output = ocl_params.get_buf_t(TypeBuffer::Output);
        let ocl_params_output = ocl_params_output.0.borrow();

        ocl_params_output
            .read(cpu_output.as_slice_mut().unwrap())
            .enq()
            .expect("Failed to copy OCL buffer to CPU");

        let ocl_params_neu_grad = ocl_params.get_buf_t(TypeBuffer::NeuGrad);
        let ocl_params_neu_grad = ocl_params_neu_grad.0.borrow();

        ocl_params_neu_grad
            .read(cpu_neu_grad.as_slice_mut().unwrap())
            .enq()
            .expect("Failed top copy OCL buffer to CPU");

        return cpu_lp;
    }

    fn batch_size(&self) -> usize {
        self.batch_size
    }

    fn set_batch_size(&mut self, batch_size: usize) {
        self.batch_size = batch_size;

        for l in self.layers.iter_mut() {
            l.set_batch_size(self.batch_size);
        }
    }

    fn last_layer_metrics(&self) -> Option<&Metrics> {
        self.last_layer().metrics()
    }

    fn set_batch_size_for_tests(&mut self, batch_size: usize) {
        self.batch_size = batch_size;

        for l in self.layers.iter_mut() {
            l.set_batch_size(self.batch_size);
        }
    }

    // TODO : maybe make return value Option<...>
    fn layer(&self, _id: usize) -> &Box<dyn AbstractLayer> {
        todo!()
    }
    fn layers_count(&self) -> usize {
        self.layers.len()
    }
    fn last_layer(&self) -> &Box<dyn AbstractLayer> {
        // https://github.com/rust-lang/rust/issues/65991
        unsafe {
            let out = std::mem::transmute::<&Box<dyn AbstractLayerOcl>, &Box<dyn AbstractLayer>>(
                self.layers.last().unwrap(),
            );
            return out;
        }
    }

    fn save_state(&self, filepath: &str) -> Result<(), Box<dyn Error>> {
        let mut vec_ws = Vec::with_capacity(self.layers.len());

        for l in self.layers.iter() {
            let ocl_params = l.ocl_params().unwrap();
            let ser_ids = l.serializable_bufs();

            vec_ws.push(ocl_params.serialize_to_pb(ser_ids));
        }

        let pb_model = PbSequentialModel { layers: vec_ws };

        let mut file = File::create(filepath)?;
        file.write_all(pb_model.encode_to_vec().as_slice())?;

        Ok(())
    }
    fn load_state(&mut self, filepath: &str) -> Result<(), Box<dyn Error>> {
        let buf = fs::read(filepath)?;

        let mut pb_model = PbSequentialModel::decode(buf.as_slice())?;
        let q = self.queue();

        for (self_l, dec_l) in self.layers.iter_mut().zip(&mut pb_model.layers) {
            if self_l.layer_type() == "InputLayerOcl" {
                continue;
            }
            let mut ocl_prms = self_l.ocl_params().unwrap();

            ocl_prms.set_vals_from_pb(dec_l, q.clone());
            self_l.set_ocl_params(ocl_prms);
        }

        Ok(())
    }
}

impl Clone for SequentialOcl {
    fn clone(&self) -> Self {
        let mut seq_mdl = SequentialOcl::new().unwrap();

        for i in self.layers.iter() {
            seq_mdl.layers.push(i.clone_layer_ocl());
        }

        seq_mdl.init_layers_but_weights();
        seq_mdl.set_batch_size(self.batch_size);

        seq_mdl
    }

    fn clone_from(&mut self, source: &Self) {
        todo!()
    }
}

impl Serialize for SequentialOcl {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let mut seq_mdl = SerdeSequentialModel::default();

        for l in self.layers.iter() {
            let s_layer_param = SerdeLayerParam {
                name: l.layer_type().to_owned(),
                params: l.cfg(),
            };
            seq_mdl.ls.push(s_layer_param);
        }

        seq_mdl.batch_size = self.batch_size();
        seq_mdl.mdl_type = self.model_type().to_string();

        seq_mdl.serialize(serializer)
    }
}

impl<'de> Deserialize<'de> for SequentialOcl {
    fn deserialize<D>(deserializer: D) -> Result<SequentialOcl, D::Error>
    where
        D: Deserializer<'de>,
    {
        let serde_mdl = SerdeSequentialModel::deserialize(deserializer)?;

        let mut seq_mdl = SequentialOcl::new().expect("Failed to create SequentialOcl model");

        if serde_mdl.mdl_type != seq_mdl.model_type() {
            todo!("Handle invalid model type");
        }

        for i in &serde_mdl.ls {
            let l_opt = create_layer_ocl(i.name.as_str(), Some(&i.params));

            if let Some(l) = l_opt {
                debug!("Create layer : {}", i.name);
                seq_mdl.layers.push(l);
            } else {
                // TODO : impl return D::Error
                panic!("Bad deserialization");
            }
        }

        seq_mdl.init_layers();
        seq_mdl.set_batch_size(serde_mdl.batch_size);

        Ok(seq_mdl)
    }
}

impl fmt::Display for SequentialOcl {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut out = String::new();

        for i in &self.layers {
            out += i.size().to_string().as_str();
            out += "-";
        }

        write!(f, "{}", &out.as_str()[0..out.len() - 1])
    }
}