1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
// Copyright (C) 2024 Hallvard Høyland Lavik
use crate::{
activation, assert_eq_shape, convolution, dense, feedback, maxpool, objective, optimizer,
tensor,
};
use rayon::prelude::*;
use std::collections::HashMap;
use std::sync::Arc;
/// Layer types of the network.
#[derive(Clone)]
pub enum Layer {
Dense(dense::Dense),
Convolution(convolution::Convolution),
Maxpool(maxpool::Maxpool),
Feedback(feedback::Feedback),
}
impl std::fmt::Display for Layer {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
Layer::Dense(layer) => write!(f, "{}", layer),
Layer::Convolution(layer) => write!(f, "{}", layer),
Layer::Maxpool(layer) => write!(f, "{}", layer),
Layer::Feedback(layer) => write!(f, "{}", layer),
}
}
}
impl Layer {
/// Extracts the number of parameters in the layer.
fn parameters(&self) -> usize {
match self {
Layer::Dense(layer) => layer.parameters(),
Layer::Convolution(layer) => layer.parameters(),
Layer::Feedback(layer) => layer.parameters(),
Layer::Maxpool(_) => 0,
}
}
}
/// A feedforward neural network.
///
/// # Attributes
///
/// * `input` - The input `tensor::Shape` of the network.
/// * `layers` - The `Layer`s of the network.
/// * `loopbacks` - The looped connections of the network.
/// * `skips` - The skip connections of the network.
/// * `accumulation` - The accumulation type of the network for looped- and skip connections.
/// * `optimizer` - The `optimizer::Optimizer` function of the network.
/// * `objective` - The `objective::Function` of the network.
pub struct Network {
input: tensor::Shape,
layers: Vec<Layer>,
loopbacks: HashMap<usize, usize>,
skips: HashMap<usize, usize>,
accumulation: feedback::Accumulation,
optimizer: optimizer::Optimizer,
objective: objective::Function,
}
impl std::fmt::Display for Network {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "Network (\n")?;
write!(f, "\toptimizer: (\n{}\n", self.optimizer)?;
write!(f, "\tobjective: (\n\t\t{}\n\t)\n", self.objective)?;
write!(f, "\tlayers: (\n")?;
for (i, layer) in self.layers.iter().enumerate() {
write!(f, "\t\t{}: {}\n", i, layer)?;
}
write!(f, "\t)\n")?;
if !self.skips.is_empty() {
write!(f, "\tskip connections: (\n")?;
for (to, from) in self.skips.iter() {
write!(f, "\t\t{}.output -> {}.output\n", from, to)?;
}
write!(f, "\t)\n")?;
}
if !self.loopbacks.is_empty() {
write!(f, "\tloops: (\n")?;
for (from, to) in self.loopbacks.iter() {
write!(f, "\t\t{}.output -> {}.input\n", from, to)?;
}
write!(f, "\t)\n")?;
}
if !self.loopbacks.is_empty() || !self.skips.is_empty() {
write!(f, "\taccumulation: {}\n", self.accumulation)?;
}
write!(f, "\tparameters: {}\n)", self.parameters())?;
Ok(())
}
}
impl Network {
/// Creates a new (empty) feedforward neural network.
///
/// Generates a new neural network with no layers, with a standard optimizer and objective,
/// respectively:
///
/// * Optimizer: Stochastic Gradient Descent (SGD) with a learning rate of 0.1.
/// * Objective: Mean Squared Error (MSE).
///
/// # Arguments
///
/// * `input` - The input dimensions of the network.
/// Either `tensor::Shape::Dense` or `tensor::Shape::Convolution`.
///
/// # Returns
///
/// An empty neural network, with no layers.
pub fn new(input: tensor::Shape) -> Self {
Network {
input,
layers: Vec::new(),
loopbacks: HashMap::new(),
skips: HashMap::new(),
accumulation: feedback::Accumulation::Sum,
optimizer: optimizer::SGD::create(0.1, None),
objective: objective::Function::create(objective::Objective::MSE, None),
}
}
/// Add a dense layer to the network.
///
/// The layer is added to the end of the network, and the number of inputs to the layer must
/// be equal to the number of outputs from the previous layer. The activation function of the
/// layer is set to the given activation function, and the layer may have a bias if specified.
///
/// # Arguments
///
/// * `outputs` - The number of outputs from the layer.
/// * `activation` - The `activation::Activation` function of the layer.
/// * `bias` - Whether the layer should contain a bias.
/// * `dropout` - The dropout rate of the layer (applied during training only).
///
/// # Panics
///
/// * If the network is configured for image inputs, and the first layer is not convolutional.
/// * If the number of inputs to the layer is not equal to the number of outputs from the
/// previous layer.
pub fn dense(
&mut self,
outputs: usize,
activation: activation::Activation,
bias: bool,
dropout: Option<f32>,
) {
if self.layers.is_empty() {
match self.input {
tensor::Shape::Single(_) => (),
_ => panic!(
"Network is configured for image inputs; the first layer cannot be dense. Modify the input shape to `tensor::Shape::Single` or add a convolutional layer first."
),
};
self.layers.push(Layer::Dense(dense::Dense::create(
self.input.clone(),
tensor::Shape::Single(outputs),
&activation,
bias,
dropout,
)));
return;
}
let inputs = match &mut self.layers.last_mut().unwrap() {
Layer::Dense(layer) => layer.outputs.clone(),
// If the previous layer is convolutional or maxpool:
// * Compute the flattened shape of the output.
// * Set the `flatten` flag to `true`.
Layer::Convolution(layer) => {
layer.flatten = true;
match layer.outputs {
tensor::Shape::Triple(ch, he, wi) => tensor::Shape::Single(ch * he * wi),
_ => panic!("Expected `tensor::Tensor` shape."),
}
}
Layer::Maxpool(layer) => {
layer.flatten = true;
match layer.outputs {
tensor::Shape::Triple(ch, he, wi) => tensor::Shape::Single(ch * he * wi),
_ => panic!("Expected `tensor::Tensor` shape."),
}
}
Layer::Feedback(layer) => match layer.outputs {
tensor::Shape::Single(_) => layer.outputs.clone(),
tensor::Shape::Triple(ch, he, wi) => {
layer.flatten = true;
tensor::Shape::Single(ch * he * wi)
}
_ => panic!("Expected `tensor::Tensor` shape."),
},
};
self.layers.push(Layer::Dense(dense::Dense::create(
inputs,
tensor::Shape::Single(outputs),
&activation,
bias,
dropout,
)));
}
/// Adds a new convolutional layer to the network.
///
/// The layer is added to the end of the network, and the number of inputs to the layer must
/// be equal to the number of outputs from the previous layer. The activation function of the
/// layer is set to the given activation function, and the layer may have a bias if specified.
///
/// # Arguments
///
/// * `filters` - The number of filters of the layer.
/// * `kernel` - The size of the kernel.
/// * `stride` - The stride of the kernel.
/// * `padding` - The padding of the input.
/// * `activation` - The `activation::Activation` function of the layer.
/// * `dropout` - The dropout rate of the layer (applied during training).
pub fn convolution(
&mut self,
filters: usize,
kernel: (usize, usize),
stride: (usize, usize),
padding: (usize, usize),
activation: activation::Activation,
dropout: Option<f32>,
) {
if self.layers.is_empty() {
match self.input {
tensor::Shape::Triple(_, _, _) => (),
_ => panic!(
"Network is configured for dense inputs; the first layer cannot be convolutional. Modify the input shape to `tensor::Shape::Triple` or add a dense layer first."
),
};
self.layers
.push(Layer::Convolution(convolution::Convolution::create(
self.input.clone(),
filters,
&activation,
kernel,
stride,
padding,
dropout,
)));
return;
}
self.layers
.push(Layer::Convolution(convolution::Convolution::create(
match self.layers.last().unwrap() {
Layer::Dense(layer) => layer.outputs.clone(),
Layer::Convolution(layer) => layer.outputs.clone(),
Layer::Maxpool(layer) => layer.outputs.clone(),
Layer::Feedback(layer) => layer.outputs.clone(),
},
filters,
&activation,
kernel,
stride,
padding,
dropout,
)));
}
/// Adds a new maxpool layer to the network.
///
/// # Arguments
///
/// * `kernel` - The shape of the filter.
/// * `stride` - The stride of the filter.
pub fn maxpool(&mut self, kernel: (usize, usize), stride: (usize, usize)) {
if self.layers.is_empty() {
match self.input {
tensor::Shape::Triple(_, _, _) => (),
_ => panic!(
"Network is configured for dense inputs; the first layer cannot be maxpool. Modify the input shape to `tensor::Shape::Triple` or add a dense layer first."
),
};
self.layers.push(Layer::Maxpool(maxpool::Maxpool::create(
self.input.clone(),
kernel,
stride,
)));
return;
}
self.layers.push(Layer::Maxpool(maxpool::Maxpool::create(
match self.layers.last().unwrap() {
Layer::Dense(layer) => layer.outputs.clone(),
Layer::Convolution(layer) => layer.outputs.clone(),
Layer::Maxpool(layer) => layer.outputs.clone(),
Layer::Feedback(layer) => layer.outputs.clone(),
},
kernel,
stride,
)));
}
/// Adds a new feedback block to the network.
///
/// # Arguments
///
/// * `layers` - The layers of the feedback block.
/// * `loops` - The number of loops in the feedback block.
///
/// # Notes
///
/// * The feedback block must have at least one layer.
/// * The input and output shapes of the feedback block must match.
/// - To allow for loops.
pub fn feedback(&mut self, layers: Vec<Layer>, loops: usize) {
assert!(
!layers.is_empty(),
"Feedback block must have at least one layer."
);
if self.layers.is_empty() {
let inputs = match layers.first().unwrap() {
Layer::Dense(layer) => layer.inputs.clone(),
Layer::Convolution(layer) => layer.inputs.clone(),
Layer::Maxpool(layer) => layer.inputs.clone(),
Layer::Feedback(_) => panic!("Nested feedback blocks are not supported."),
};
assert_eq_shape!(self.input, inputs);
self.layers
.push(Layer::Feedback(feedback::Feedback::create(layers, loops)));
return;
}
self.layers
.push(Layer::Feedback(feedback::Feedback::create(layers, loops)));
}
/// Add a loop connection between two layers.
///
/// INCOMPLETE: Currently only supports loop connections for identical shapes.
///
/// # Arguments
///
/// * `from` - The index of the layer to connect from.
/// * `to` - The index of the layer to connect to.
/// * `scale` - The scaling function of the loop connection wrt. gradients.
pub fn loopback(&mut self, from: usize, to: usize, scale: tensor::Scale) {
if from > self.layers.len() || to >= self.layers.len() || from < to {
panic!("Invalid layer indices for loop connection.");
} else if self.loopbacks.contains_key(&from) {
panic!("Loop connection already exists for layer {}", from);
}
let inputs = match &self.layers[to] {
Layer::Dense(layer) => &layer.inputs,
Layer::Convolution(layer) => &layer.inputs,
Layer::Maxpool(layer) => &layer.inputs,
Layer::Feedback(feedback) => &feedback.inputs,
};
let outputs = match &self.layers[from] {
Layer::Dense(layer) => &layer.outputs,
Layer::Convolution(layer) => &layer.outputs,
Layer::Maxpool(layer) => &layer.outputs,
Layer::Feedback(feedback) => &feedback.outputs,
};
assert_eq_shape!(inputs, outputs);
// Loop through layers to -> from and add +1 to its loopback count.
for k in to..from + 1 {
match &mut self.layers[k] {
Layer::Dense(layer) => {
layer.scale = Arc::clone(&scale);
layer.loops += 1.0
}
Layer::Convolution(layer) => {
layer.scale = Arc::clone(&scale);
layer.loops += 1.0
}
Layer::Maxpool(layer) => layer.loops += 1.0,
Layer::Feedback(_) => panic!("Loop connection includes feedback block."),
}
}
// Store the loop connection for use in the forward pass.
self.loopbacks.insert(from, to);
}
/// Add a skip connection between two layers.
///
/// INCOMPLETE: Currently only supports skip connections for identical shapes.
///
/// # Arguments
///
/// * `from` - The index of the layer to connect from.
/// * `to` - The index of the layer to connect to.
pub fn skip(&mut self, from: usize, to: usize) {
if from > self.layers.len() || to >= self.layers.len() || from > to {
panic!("Invalid layer indices for skip connection.");
} else if self.skips.contains_key(&from) {
panic!("Skip connection already exists for layer {}", from);
}
let left = match &self.layers[to] {
Layer::Dense(layer) => &layer.outputs,
Layer::Convolution(layer) => &layer.outputs,
Layer::Maxpool(_) => panic!("Skip connection cannot include maxpool layer."),
Layer::Feedback(feedback) => &feedback.outputs,
};
let right = match &self.layers[from] {
Layer::Dense(layer) => &layer.outputs,
Layer::Convolution(layer) => &layer.outputs,
Layer::Maxpool(_) => panic!("Skip connection cannot include maxpool layer."),
Layer::Feedback(feedback) => &feedback.outputs,
};
assert_eq_shape!(left, right);
// Store the skip connection for use in the propagation.
self.skips.insert(to, from);
}
/// Extract the total number of parameters in the network.
fn parameters(&self) -> usize {
self.layers.iter().map(|layer| layer.parameters()).sum()
}
/// Set the `feedback::Accumulation` function of the network.
/// Note that this is only relevant for loopback- and skip connections.
pub fn set_accumulation(&mut self, accumulation: feedback::Accumulation) {
self.accumulation = accumulation;
}
/// Set the `activation::Activation` function of a layer.
///
/// # Arguments
///
/// * `layer` - The index of the layer (in the `self.layers` vector).
/// * `activation` - The new `activation::Activation` function to be used.
///
/// # Panics
///
/// * If the layer index is out of bounds.
pub fn set_activation(&mut self, layer: usize, activation: activation::Activation) {
if layer >= self.layers.len() {
panic!("Invalid layer index");
}
match self.layers[layer] {
Layer::Dense(ref mut layer) => {
layer.activation = activation::Function::create(&activation)
}
Layer::Convolution(ref mut layer) => {
layer.activation = activation::Function::create(&activation)
}
_ => panic!("Maxpool layers do not use activation functions!"),
}
}
/// Set the `optimizer::Optimizer` function of the network.
///
/// # Arguments
///
/// * `optimizer` - The new `optimizer::Optimizer` function to be used.
pub fn set_optimizer(&mut self, mut optimizer: optimizer::Optimizer) {
// Create the placeholder vector used for various optimizer functions.
// See the `match optimizer` below.
let mut vectors: Vec<Vec<Vec<tensor::Tensor>>> = Vec::new();
for layer in self.layers.iter().rev() {
match layer {
Layer::Dense(layer) => {
let (output, input) = match &layer.weights.shape {
tensor::Shape::Double(output, input) => (*output, *input),
_ => panic!("Expected Dense shape"),
};
vectors.push(vec![vec![
tensor::Tensor::double(vec![vec![0.0; input]; output]),
if layer.bias.is_some() {
tensor::Tensor::single(vec![0.0; output])
} else {
tensor::Tensor::single(vec![])
},
]]);
}
Layer::Convolution(layer) => {
let (ch, kh, kw) = match layer.kernels[0].shape {
tensor::Shape::Triple(ch, he, wi) => (ch, he, wi),
_ => panic!("Expected Convolution shape"),
};
vectors.push(vec![
vec![
tensor::Tensor::triple(vec![vec![vec![0.0; kw]; kh]; ch]),
// TODO: Add bias term here.
];
layer.kernels.len()
]);
}
Layer::Maxpool(_) => vectors.push(vec![vec![tensor::Tensor::single(vec![0.0; 0])]]),
_ => unimplemented!("Feedback blocks not yet implemented."),
}
}
// Validate the optimizers' parameters.
// Override to default values if wrongly set.
optimizer.validate(vectors);
self.optimizer = optimizer;
}
/// Set the `objective::Objective` function of the network.
///
/// # Arguments
///
/// * `objective` - The new `objective::Objective` function to be used.
/// * `clamp` - The clamp values for the objective function.
pub fn set_objective(&mut self, objective: objective::Objective, clamp: Option<(f32, f32)>) {
self.objective = objective::Function::create(objective, clamp);
}
/// Train the network on the given inputs and targets for the given number of epochs.
///
/// Stops early if the validation loss does not improve for five consecutive epochs.
///
/// Computes the forward and backward pass of the network for the given number of epochs,
/// with respect to the given inputs and targets. The loss and gradient of the network is
/// computed for each sample in the input data, and the weights and biases of the network are
/// updated accordingly.
///
/// # Arguments
///
/// * `inputs` - The individual inputs (x) stored in a vector.
/// * `targets` - The respective individual (y) targets stored in a vector.
/// * `validation` - An optional tuple.
/// - 1: The validation inputs.
/// - 2: The corresponding validation targets.
/// - 3: The tolerance for early stopping.
/// If the validation loss does not improve for this many epochs, the training stops.
/// * `batch` - The batch size to use when training.
/// * `epochs` - The number of epochs to train the network for.
/// * `print` - The frequency of printing validation metrics to the console.
///
/// # Returns
///
/// A vector of the train- and validation loss of the network per epoch.
///
/// # Panics
///
/// If the loss is NaN.
pub fn learn(
&mut self,
inputs: &Vec<&tensor::Tensor>,
targets: &Vec<&tensor::Tensor>,
validation: Option<(&Vec<&tensor::Tensor>, &Vec<&tensor::Tensor>, i32)>,
batch: usize,
epochs: i32,
print: Option<i32>,
) -> (Vec<f32>, Vec<f32>) {
let mut val_acc: Option<f32> = None;
let mut threshold: Option<i32> = None;
if let Some((_, _, limit)) = validation {
threshold = Some(limit);
}
// Print the header of the table.
if let Some(print) = print {
if print > epochs as i32 {
println!("Note: print frequency is higher than the number of epochs. No printouts will be made.");
} else if let Some(_) = validation {
// println!("{}", "-".repeat(51));
println!("{:>5} \t {:<23} \t {:>10}", "EPOCH", "LOSS", "ACCURACY");
println!(
"{:>5} \t {:>10} | {:<10} \t {:>10}",
"", "validation", "train", "validation"
);
} else {
// println!("{}", "-".repeat(19));
println!("{:>5} \t {:>10}", "EPOCH", "TRAIN LOSS");
}
}
self.layers.iter_mut().for_each(|layer| match layer {
Layer::Dense(layer) => layer.training = true,
Layer::Convolution(layer) => layer.training = true,
Layer::Feedback(feedback) => feedback.training(true),
_ => (),
});
let mut train_loss = Vec::new();
let mut val_loss = Vec::new();
// Split the input data into batches.
let batches: Vec<(&[&tensor::Tensor], &[&tensor::Tensor])> = inputs
.par_chunks(batch)
.zip(targets.par_chunks(batch))
.collect();
for epoch in 1..epochs + 1 {
let mut loss_epoch = 0.0;
for batch in batches.iter() {
// Parallel iteration over the batch.
// I.e., parallell forward and backward pass for each sample in the batch.
let results: Vec<_> = batch
.into_par_iter()
.map(|(input, target)| {
let (unactivated, activated, maxpools) = self.forward(input);
let (loss, gradient) =
self.objective.loss(&activated.last().unwrap(), target);
let (wg, bg) = self.backward(gradient, &unactivated, &activated, &maxpools);
(wg, bg, loss)
})
.collect();
let mut weight_gradients: Vec<tensor::Tensor> = Vec::new();
let mut bias_gradients: Vec<Option<tensor::Tensor>> = Vec::new();
let mut losses: Vec<f32> = Vec::new();
// Collect the results from the parallel iteration, and sum the gradients and loss.
for (wg, wb, loss) in results {
if loss.is_nan() {
panic!("Loss is NaN. Aborting.");
}
losses.push(loss);
if weight_gradients.is_empty() {
weight_gradients = wg;
bias_gradients = wb;
} else {
for (gradient, new) in weight_gradients.iter_mut().zip(wg.iter()) {
gradient.add_inplace(new)
}
for (gradient, new) in bias_gradients.iter_mut().zip(wb.iter()) {
match gradient {
Some(gradient) => match new {
Some(new) => gradient.add_inplace(new),
None => panic!("Expected Some, got None."),
},
None => match new {
Some(_) => panic!("Expected None, got Some."),
None => (),
},
}
}
}
}
loss_epoch += losses.iter().sum::<f32>() / losses.len() as f32;
// Perform the update step wrt. the summed gradients for the batch.
self.update(epoch, weight_gradients, bias_gradients);
}
train_loss.push(loss_epoch / batches.len() as f32);
if let Some((val_inputs, val_targets, _)) = validation {
let (_val_loss, _val_acc) = self.validate(val_inputs, val_targets, 1e-6);
val_loss.push(_val_loss);
val_acc = Some(_val_acc);
}
if let Some(print) = print {
if epoch % print == 0 && val_acc.is_some() {
println!(
"{:>5} \t {:>10.5} | {:<10.5} \t {:>8.2} %",
epoch,
val_loss.last().unwrap(),
train_loss.last().unwrap(),
val_acc.unwrap() * 100.0
);
} else if epoch % print == 0 {
println!("{:>5} \t {:>10.5}", epoch, train_loss.last().unwrap(),);
}
}
// Check if the validation loss has not improved for the last `threshold` epochs.
// If so, stop training.
if let Some(threshold) = threshold {
if epoch > threshold {
let history: Vec<&f32> =
val_loss.iter().rev().take(threshold as usize).collect();
let mut increasing = true;
for i in 0..threshold as usize - 1 {
if history[i] <= history[i + 1] {
increasing = false;
break;
}
}
if increasing {
println!("Validation loss has increased for the last {} epochs.\nStopping training (at epoch {}).", threshold, epoch);
break;
}
}
}
}
for layer in &mut self.layers {
match layer {
Layer::Dense(layer) => layer.training = false,
Layer::Convolution(layer) => layer.training = false,
Layer::Feedback(feedback) => feedback.training(false),
_ => (),
}
}
// // Print the footer of the table.
// if print.unwrap_or(epochs + 1) <= epochs as i32 {
// if let Some(_) = validation {
// println!("{}", "-".repeat(51));
// } else {
// println!("{}", "-".repeat(19));
// }
// }
(train_loss, val_loss)
}
/// Compute the forward pass of the network for the given input, including all intermediate
/// pre- and post-activation values.
///
/// # Arguments
///
/// * `input` - The input data (x).
///
/// # Returns
///
/// A tuple containing the pre- and post-activation values and the maxpool indices (if any) of each layer.
pub fn forward(
&self,
input: &tensor::Tensor,
) -> (
Vec<tensor::Tensor>,
Vec<tensor::Tensor>,
Vec<Option<tensor::Tensor>>,
) {
let mut unactivated: Vec<tensor::Tensor> = Vec::new();
let mut activated: Vec<tensor::Tensor> = vec![input.clone()];
let mut maxpools: Vec<Option<tensor::Tensor>> = Vec::new();
for i in 0..self.layers.len() {
// Perform the forward pass of the current layer.
let (mut pre, mut post, mut max) = self._forward(activated.last().unwrap(), i, i + 1);
// Store the outputs of the current layer.
unactivated.append(&mut pre);
activated.append(&mut post);
maxpools.append(&mut max);
// Check if the layer output includes a skip connection.
if self.skips.contains_key(&i) {
let _pre = unactivated[self.skips[&i]].clone();
let _post = activated[self.skips[&i] + 1].clone();
match self.accumulation {
feedback::Accumulation::Sum => {
unactivated[i].add_inplace(&_pre);
activated[i + 1].add_inplace(&_post);
}
feedback::Accumulation::Multiply => {
unactivated[i].mul_inplace(&_pre);
activated[i + 1].mul_inplace(&_post);
}
feedback::Accumulation::Overwrite => {
unactivated[i] = _pre;
activated[i + 1] = _post;
}
#[allow(unreachable_patterns)]
_ => unimplemented!("Accumulation method not implemented."),
}
}
// Check if the layer output should be fed back to a previous layer.
if self.loopbacks.contains_key(&i) {
let mut current: tensor::Tensor = activated.last().unwrap().clone();
// Reshaping the last activated tensor in cases of flattened output.
current = current.reshape(match self.layers[self.loopbacks[&i]] {
Layer::Dense(ref layer) => layer.inputs.clone(),
Layer::Convolution(ref layer) => layer.inputs.clone(),
Layer::Maxpool(ref layer) => layer.inputs.clone(),
_ => panic!("Feedback not implemented for this layer type."),
});
// Add the original input for of the fed-back layer to the latent representation.
current.add_inplace(&activated[self.loopbacks[&i]]);
// Perform the forward pass of the feedback loop.
let (fpre, fpost, fmax) = self._forward(¤t, self.loopbacks[&i], i + 1);
// Store the outputs of the loopback layers.
for (idx, j) in (self.loopbacks[&i]..i + 1).enumerate() {
match self.accumulation {
feedback::Accumulation::Sum => {
unactivated[j].add_inplace(&fpre[idx]);
activated[j + 1].add_inplace(&fpost[idx]);
// Extend the maxpool indices.
if let Some(Some(max)) = maxpools.get_mut(j) {
if let Some(fmax) = &fmax[idx] {
max.extend(&fmax);
} else {
panic!("Maxpool indices are missing.");
}
}
}
feedback::Accumulation::Multiply => {
unactivated[j].mul_inplace(&fpre[idx]);
activated[j + 1].mul_inplace(&fpost[idx]);
// Extend the maxpool indices.
if let Some(Some(max)) = maxpools.get_mut(j) {
if let Some(fmax) = &fmax[idx] {
max.extend(&fmax);
} else {
panic!("Maxpool indices are missing.");
}
}
}
feedback::Accumulation::Overwrite => {
unactivated[j] = fpre[idx].to_owned();
activated[j + 1] = fpost[idx].to_owned();
// Overwrite the maxpool indices.
if let Some(Some(max)) = maxpools.get_mut(j) {
if let Some(fmax) = &fmax[idx] {
*max = fmax.clone();
} else {
panic!("Maxpool indices are missing.");
}
}
}
#[allow(unreachable_patterns)]
_ => unimplemented!("Accumulation method not implemented."),
}
}
}
}
(unactivated, activated, maxpools)
}
/// Compute the forward pass for the specified range of layers.
///
/// # Arguments
///
/// * `input` - The input data (x).
/// * `from` - The starting index of the layers to compute the forward pass for.
/// * `to` - The ending index of the layers to compute the forward pass for.
///
/// # Returns
///
/// A tuple containing the pre- and post-activation values and the maxpool indices (if any) of each layer inbetween.
fn _forward(
&self,
input: &tensor::Tensor,
from: usize,
to: usize,
) -> (
Vec<tensor::Tensor>,
Vec<tensor::Tensor>,
Vec<Option<tensor::Tensor>>,
) {
let mut unactivated: Vec<tensor::Tensor> = Vec::new();
let mut activated: Vec<tensor::Tensor> = vec![input.clone()];
let mut maxpools: Vec<Option<tensor::Tensor>> = Vec::new();
for layer in &self.layers[from..to] {
let x = activated.last().unwrap();
match layer {
Layer::Dense(layer) => {
assert_eq_shape!(layer.inputs, x.shape);
let (pre, post) = layer.forward(x);
unactivated.push(pre);
activated.push(post);
maxpools.push(None);
}
Layer::Convolution(layer) => {
assert_eq_shape!(layer.inputs, x.shape);
let (pre, post) = layer.forward(x);
unactivated.push(pre);
activated.push(post);
maxpools.push(None);
}
Layer::Maxpool(layer) => {
assert_eq_shape!(layer.inputs, x.shape);
let (pre, post, max) = layer.forward(x);
unactivated.push(pre);
activated.push(post);
maxpools.push(Some(max));
}
_ => unimplemented!("Feedback blocks not yet implemented."),
};
}
// Removing the input clone from the activated vector.
// As this is present in the `forward` function.
activated.remove(0);
(unactivated, activated, maxpools)
}
/// Compute the backward pass of the network for the given output gradient.
///
/// # Arguments
///
/// * `gradient` - The gradient of the output.
/// * `unactivated` - The pre-activation values of each layer.
/// * `activated` - The post-activation values of each layer.
/// * `maxpools` - The maxpool indices of each maxpool-layer.
///
/// # Returns
///
/// A tuple containing the weight and bias gradients of each layer.
fn backward(
&self,
gradient: tensor::Tensor,
unactivated: &Vec<tensor::Tensor>,
activated: &Vec<tensor::Tensor>,
maxpools: &Vec<Option<tensor::Tensor>>,
) -> (Vec<tensor::Tensor>, Vec<Option<tensor::Tensor>>) {
let mut gradients: Vec<tensor::Tensor> = vec![gradient];
let mut weight_gradient: Vec<tensor::Tensor> = Vec::new();
let mut bias_gradient: Vec<Option<tensor::Tensor>> = Vec::new();
let mut skips = HashMap::new();
for (key, value) in self.skips.iter() {
skips.insert(value, key);
}
self.layers.iter().rev().enumerate().for_each(|(i, layer)| {
let idx = self.layers.len() - i - 1;
let input: &tensor::Tensor = &activated[idx];
let output: &tensor::Tensor = &unactivated[idx];
// Check for skip connections.
// Add the gradient of the skip connection to the current gradient.
if skips.contains_key(&idx) {
let gradient = gradients[i].clone();
gradients.last_mut().unwrap().add_inplace(&gradient);
}
let (gradient, wg, bg) = match layer {
Layer::Dense(layer) => layer.backward(&gradients.last().unwrap(), input, output),
Layer::Convolution(layer) => {
layer.backward(&gradients.last().unwrap(), input, output)
}
Layer::Maxpool(layer) => (
layer.backward(
&gradients.last().unwrap(),
if let Some(max) = &maxpools[idx] {
max
} else {
panic!("Maxpool indices are missing.")
},
),
tensor::Tensor::single(vec![0.0; 0]),
None,
),
_ => unimplemented!("Feedback blocks not yet implemented."),
};
gradients.push(gradient);
weight_gradient.push(wg);
bias_gradient.push(bg);
});
(weight_gradient, bias_gradient)
}
/// Update the weights and biases of the network using the given gradients.
///
/// # Arguments
///
/// * `stepnr` - The current step number (i.e., epoch number).
/// * `weight_gradients` - The weight gradients of each layer.
/// * `bias_gradients` - The bias gradients of each layer.
fn update(
&mut self,
stepnr: i32,
mut weight_gradients: Vec<tensor::Tensor>,
mut bias_gradients: Vec<Option<tensor::Tensor>>,
) {
self.layers
.iter_mut()
.rev()
.enumerate()
.for_each(|(i, layer)| match layer {
Layer::Dense(layer) => {
self.optimizer.update(
i,
0,
false,
stepnr,
&mut layer.weights,
&mut weight_gradients[i],
);
if let Some(bias) = &mut layer.bias {
self.optimizer.update(
i,
0,
true,
stepnr,
bias,
&mut bias_gradients[i].as_mut().unwrap(),
)
}
}
Layer::Convolution(layer) => {
for (f, (filter, gradient)) in layer
.kernels
.iter_mut()
.zip(weight_gradients[i].quadruple_to_vec_triple().iter_mut())
.enumerate()
{
self.optimizer.update(i, f, false, stepnr, filter, gradient);
// TODO: Add bias term here.
}
}
Layer::Maxpool(_) => {}
_ => unimplemented!("Feedback blocks not yet implemented."),
});
}
/// Validate the network on the given inputs and targets.
///
/// Computes the forward pass of the network for the given inputs, and compares the output to
/// the targets. The accuracy and loss of the network is computed for each sample in the
/// input.
///
/// # Arguments
///
/// * `inputs` - The input data (x).
/// * `targets` - The targets of the given inputs (y).
/// * `tol` - The tolerance for the accuracy.
///
/// # Returns
///
/// A tuple containing the total loss and accuracy of the network for the given `inputs` and `targets`.
pub fn validate(
&mut self,
inputs: &[&tensor::Tensor],
targets: &[&tensor::Tensor],
tol: f32,
) -> (f32, f32) {
let mut training: bool = false;
for layer in &mut self.layers {
match layer {
Layer::Dense(layer) => {
if layer.training && !training {
training = true;
} else {
break;
}
layer.training = false
}
Layer::Convolution(layer) => layer.training = false,
Layer::Feedback(feedback) => feedback.training(false),
_ => (),
}
}
let results: Vec<_> = inputs
.par_iter()
.zip(targets.par_iter())
.map(|(input, target)| {
let prediction = self.predict(input);
let (loss, _) = self.objective.loss(&prediction, target);
let acc = match self.layers.last().unwrap() {
Layer::Dense(layer) => match layer.activation {
activation::Function::Softmax(_) => {
if target.argmax() == prediction.argmax() {
1.0
} else {
0.0
}
}
_ => {
let target = target.get_flat();
let prediction = prediction.get_flat();
if target.len() == 1 {
if (prediction[0] - target[0]).abs() < tol {
1.0
} else {
0.0
}
} else {
target
.iter()
.zip(prediction.iter())
.map(|(t, p)| if (t - p).abs() < tol { 1.0 } else { 0.0 })
.sum::<f32>()
/ target.len() as f32
}
}
},
Layer::Convolution(_) => {
unimplemented!("Image output (target) not supported.")
}
Layer::Maxpool(_) => {
unimplemented!("Image output (target) not supported.")
}
_ => unimplemented!("Feedback blocks not yet implemented."),
};
(loss, acc)
})
.collect();
if training {
for layer in &mut self.layers {
match layer {
Layer::Dense(layer) => layer.training = true,
Layer::Convolution(layer) => layer.training = true,
Layer::Feedback(feedback) => feedback.training(true),
_ => (),
}
}
}
let mut loss: Vec<f32> = Vec::new();
let mut acc: Vec<f32> = Vec::new();
for (_loss, _acc) in results {
loss.push(_loss);
acc.push(_acc);
}
(
loss.iter().sum::<f32>() / loss.len() as f32,
acc.iter().sum::<f32>() / acc.len() as f32,
)
}
/// Predict the output of the network for the given input.
///
/// Computes the forward pass of the network for the given input, and returns the output.
/// That is, the output of the last layer of the network only.
///
/// # Arguments
///
/// * `input` - The input data (x).
///
/// # Returns
///
/// The output of the network for the given input.
pub fn predict(&self, input: &tensor::Tensor) -> tensor::Tensor {
let mut output = input.clone();
for layer in &self.layers {
match layer {
Layer::Dense(layer) => {
let (_, out) = layer.forward(&output);
output = out;
}
Layer::Convolution(layer) => {
let (_, out) = layer.forward(&output);
output = out;
}
Layer::Maxpool(layer) => {
let (_, out, _) = layer.forward(&output);
output = out;
}
_ => unimplemented!("Feedback blocks not yet implemented."),
}
}
output
}
/// Predict the output of the network for the given two-dimensional inputs.
///
/// # Arguments
///
/// * `inputs` - The input data (x).
///
/// # Returns
///
/// The output of the network for each of the given inputs.
pub fn predict_batch(&self, inputs: &Vec<&tensor::Tensor>) -> Vec<tensor::Tensor> {
inputs.iter().map(|input| self.predict(input)).collect()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::assert_eq_data;
#[test]
fn test_forward() {
let mut network = Network::new(tensor::Shape::Triple(1, 3, 3));
network.convolution(
1,
(3, 3),
(1, 1),
(1, 1),
activation::Activation::Linear,
None,
);
match network.layers[0] {
Layer::Convolution(ref mut conv) => {
conv.kernels[0] = tensor::Tensor::triple(vec![vec![
vec![0.0, 0.0, 0.0],
vec![0.0, 1.0, 0.0],
vec![0.0, 0.0, 0.0],
]]);
}
_ => (),
}
let input = tensor::Tensor::triple(vec![vec![
vec![1.0, 2.0, 3.0],
vec![4.0, 5.0, 6.0],
vec![7.0, 8.0, 9.0],
]]);
let (pre, post, _) = network.forward(&input);
assert_eq_data!(pre.last().unwrap().data, input.data);
assert_eq_data!(post.last().unwrap().data, input.data);
}
#[test]
fn test_backward() {
// See Python file `documentation/validation/test_network_backward.py` for the reference implementation.
let mut network = Network::new(tensor::Shape::Triple(2, 4, 4));
network.convolution(
3,
(2, 2),
(1, 1),
(0, 0),
activation::Activation::ReLU,
None,
);
network.dense(5, activation::Activation::ReLU, true, None);
match network.layers[0] {
Layer::Convolution(ref mut conv) => {
conv.kernels[0] = tensor::Tensor::triple(vec![
vec![vec![1.0, 1.0], vec![2.0, 2.0]],
vec![vec![1.0, 2.0], vec![1.0, 2.0]],
]);
conv.kernels[1] = tensor::Tensor::triple(vec![
vec![vec![2.0, 2.0], vec![1.0, 1.0]],
vec![vec![2.0, 1.0], vec![2.0, 1.0]],
]);
conv.kernels[2] = tensor::Tensor::triple(vec![
vec![vec![0.0, 0.0], vec![0.0, 0.0]],
vec![vec![0.0, 0.0], vec![0.0, 0.0]],
]);
}
_ => (),
}
match network.layers[1] {
Layer::Dense(ref mut dense) => {
dense.weights = tensor::Tensor::double(vec![
vec![2.5; 27],
vec![-1.2; 27],
vec![0.5; 27],
vec![3.5; 27],
vec![5.2; 27],
]);
dense.bias = Some(tensor::Tensor::single(vec![3.0, 4.0, 5.0, 6.0, 7.0]));
}
_ => (),
}
let input = tensor::Tensor::triple(vec![
vec![
vec![0.0, 0.0, 0.0, 0.0],
vec![0.0, 1.0, 2.0, 0.0],
vec![0.0, 3.0, 4.0, 0.0],
vec![0.0, 0.0, 0.0, 0.0],
],
vec![
vec![0.0, 0.0, 0.0, 0.0],
vec![0.0, 4.0, 3.0, 0.0],
vec![0.0, 2.0, 1.0, 0.0],
vec![0.0, 0.0, 0.0, 0.0],
],
]);
let output = vec![
tensor::Tensor::triple(vec![
vec![
vec![10.0, 16.0, 7.0],
vec![19.0, 31.0, 14.0],
vec![7.0, 11.0, 5.0],
],
vec![
vec![5.0, 14.0, 8.0],
vec![11.0, 29.0, 16.0],
vec![8.0, 19.0, 10.0],
],
vec![
vec![0.0, 0.0, 0.0],
vec![0.0, 0.0, 0.0],
vec![0.0, 0.0, 0.0],
],
]),
tensor::Tensor::single(vec![
10.0, 16.0, 7.0, 19.0, 31.0, 14.0, 7.0, 11.0, 5.0, 5.0, 14.0, 8.0, 11.0, 29.0,
16.0, 8.0, 19.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
]),
tensor::Tensor::single(vec![603.0, -284.00003, 125.0, 846.0, 1255.0]),
tensor::Tensor::single(vec![603.0, 0.0, 125.0, 846.0, 1255.0]),
];
let (pre, post, max) = network.forward(&input);
assert_eq_data!(pre[0].data, output[0].data);
assert_eq_data!(post[1].data, output[1].data);
assert_eq_data!(pre[1].data, output[2].data);
assert_eq_data!(post[2].data, output[3].data);
// let gradient = tensor::Tensor::from(vec![vec![vec![1.0; 3]; 3]; 3]);
let gradient = tensor::Tensor::single(vec![1.0; 5]);
let (weight_gradient, bias_gradient) = network.backward(gradient, &pre, &post, &max);
let _weight_gradient = vec![
tensor::Tensor::quadruple(vec![
vec![vec![vec![117., 117.]; 2]; 27],
vec![vec![vec![117., 117.]; 2]; 27],
vec![vec![vec![0.0, 0.0]; 2]; 27],
]),
tensor::Tensor::double(vec![
vec![
10., 16., 7., 19., 31., 14., 7., 11., 5., 5., 14., 8., 11., 29., 16., 8., 19.,
10., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
],
vec![
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0.,
],
vec![
10., 16., 7., 19., 31., 14., 7., 11., 5., 5., 14., 8., 11., 29., 16., 8., 19.,
10., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
],
vec![
10., 16., 7., 19., 31., 14., 7., 11., 5., 5., 14., 8., 11., 29., 16., 8., 19.,
10., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
],
vec![
10., 16., 7., 19., 31., 14., 7., 11., 5., 5., 14., 8., 11., 29., 16., 8., 19.,
10., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
],
]),
tensor::Tensor::single(vec![1., 0., 1., 1., 1.]),
];
// Kernel gradient(s)
assert_eq_data!(weight_gradient[1].data, _weight_gradient[0].data);
// Fully connected layer gradient
assert_eq_data!(weight_gradient[0].data, _weight_gradient[1].data);
if let Some(bias) = bias_gradient.last().unwrap() {
assert_eq_data!(bias.data, _weight_gradient[2].data);
}
}
#[test]
fn test_update() {
// See Python file `documentation/validation/test_network_update.py` for the reference implementation.
let mut network = Network::new(tensor::Shape::Triple(2, 4, 4));
network.convolution(
3,
(2, 2),
(1, 1),
(0, 0),
activation::Activation::ReLU,
None,
);
network.dense(5, activation::Activation::ReLU, true, None);
network.set_optimizer(optimizer::SGD::create(0.1, None));
match network.layers[0] {
Layer::Convolution(ref mut conv) => {
conv.kernels[0] = tensor::Tensor::triple(vec![
vec![vec![1.0, 1.0], vec![2.0, 2.0]],
vec![vec![1.0, 2.0], vec![1.0, 2.0]],
]);
conv.kernels[1] = tensor::Tensor::triple(vec![
vec![vec![2.0, 2.0], vec![1.0, 1.0]],
vec![vec![2.0, 1.0], vec![2.0, 1.0]],
]);
conv.kernels[2] = tensor::Tensor::triple(vec![
vec![vec![0.0, 0.0], vec![0.0, 0.0]],
vec![vec![0.0, 0.0], vec![0.0, 0.0]],
]);
}
_ => (),
}
match network.layers[1] {
Layer::Dense(ref mut dense) => {
dense.weights = tensor::Tensor::double(vec![
vec![2.5; 27],
vec![-1.2; 27],
vec![0.5; 27],
vec![3.5; 27],
vec![5.2; 27],
]);
dense.bias = Some(tensor::Tensor::single(vec![3.0, 4.0, 5.0, 6.0, 7.0]));
}
_ => (),
}
let input = tensor::Tensor::triple(vec![
vec![
vec![0.0, 0.0, 0.0, 0.0],
vec![0.0, 1.0, 2.0, 0.0],
vec![0.0, 3.0, 4.0, 0.0],
vec![0.0, 0.0, 0.0, 0.0],
],
vec![
vec![0.0, 0.0, 0.0, 0.0],
vec![0.0, 4.0, 3.0, 0.0],
vec![0.0, 2.0, 1.0, 0.0],
vec![0.0, 0.0, 0.0, 0.0],
],
]);
let (pre, post, max) = network.forward(&input);
let gradient = tensor::Tensor::single(vec![1.0; 5]);
let (weight_gradients, bias_gradients) = network.backward(gradient, &pre, &post, &max);
network.update(0, weight_gradients, bias_gradients);
match network.layers[0] {
Layer::Convolution(ref mut conv) => {
assert_eq_data!(
conv.kernels[0].data,
tensor::Tensor::triple(vec![
vec![vec![-10.7, -10.7], vec![-9.7000, -9.7000]],
vec![vec![-10.7, -9.7000], vec![-10.7, -9.7000]],
])
.data
);
assert_eq_data!(
conv.kernels[1].data,
tensor::Tensor::triple(vec![
vec![vec![-9.7000, -9.7000], vec![-10.7, -10.7]],
vec![vec![-9.7000, -10.7], vec![-9.7000, -10.7]],
])
.data
);
assert_eq_data!(
conv.kernels[2].data,
tensor::Tensor::triple(vec![
vec![vec![0.0, 0.0], vec![0.0, 0.0]],
vec![vec![0.0, 0.0], vec![0.0, 0.0]],
])
.data
);
}
_ => (),
}
match network.layers[1] {
Layer::Dense(ref mut dense) => {
assert_eq_data!(
dense.weights.data,
tensor::Data::Double(vec![
vec![
1.5000, 0.9000, 1.8000, 0.6000, -0.6000, 1.1000, 1.8000, 1.4000,
2.0000, 2.0000, 1.1000, 1.7000, 1.4000, -0.4000, 0.9000, 1.7000,
0.6000, 1.5000, 2.5000, 2.5000, 2.5000, 2.5000, 2.5000, 2.5000, 2.5000,
2.5000, 2.5000
],
vec![
-1.2000, -1.2000, -1.2000, -1.2000, -1.2000, -1.2000, -1.2000, -1.2000,
-1.2000, -1.2000, -1.2000, -1.2000, -1.2000, -1.2000, -1.2000, -1.2000,
-1.2000, -1.2000, -1.2000, -1.2000, -1.2000, -1.2000, -1.2000, -1.2000,
-1.2000, -1.2000, -1.2000
],
vec![
-0.5000, -1.1000, -0.2000, -1.4000, -2.6000, -0.9000, -0.2000, -0.6000,
0.0000, 0.0000, -0.9000, -0.3000, -0.6000, -2.4000, -1.1000, -0.3000,
-1.4000, -0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000
],
vec![
2.5000, 1.9000, 2.8000, 1.6000, 0.4000, 2.1000, 2.8000, 2.4000, 3.0000,
3.0000, 2.1000, 2.7000, 2.4000, 0.6000, 1.9000, 2.7000, 1.6000, 2.5000,
3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000
],
vec![
4.2000, 3.6000, 4.5000, 3.3000, 2.1000, 3.8000, 4.5000, 4.1000, 4.7000,
4.7000, 3.8000, 4.4000, 4.1000, 2.3000, 3.6000, 4.4000, 3.3000, 4.2000,
5.2000, 5.2000, 5.2000, 5.2000, 5.2000, 5.2000, 5.2000, 5.2000, 5.2000
],
])
);
if let Some(bias) = &dense.bias {
assert_eq_data!(
bias.data,
tensor::Data::Single(vec![2.9000, 4.0000, 4.9000, 5.9000, 6.9000])
);
}
}
_ => (),
}
}
}