netlib-provider 0.4.1

The package provides BLAS and LAPACK using the Netlib implementation.
*> \brief \b ZGEMQRT
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZGEMQRT + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgemqrt.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgemqrt.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgemqrt.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGEMQRT( SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT, 
*                          C, LDC, WORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER SIDE, TRANS
*       INTEGER   INFO, K, LDV, LDC, M, N, NB, LDT
*       ..
*       .. Array Arguments ..
*       COMPLEX*16   V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGEMQRT overwrites the general complex M-by-N matrix C with
*>
*>                 SIDE = 'L'     SIDE = 'R'
*> TRANS = 'N':      Q C            C Q
*> TRANS = 'C':    Q**H C            C Q**H
*>
*> where Q is a complex orthogonal matrix defined as the product of K
*> elementary reflectors:
*>
*>       Q = H(1) H(2) . . . H(K) = I - V T V**H
*>
*> generated using the compact WY representation as returned by ZGEQRT. 
*>
*> Q is of order M if SIDE = 'L' and of order N  if SIDE = 'R'.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>          = 'L': apply Q or Q**H from the Left;
*>          = 'R': apply Q or Q**H from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          = 'N':  No transpose, apply Q;
*>          = 'C':  Transpose, apply Q**H.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines
*>          the matrix Q.
*>          If SIDE = 'L', M >= K >= 0;
*>          if SIDE = 'R', N >= K >= 0.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*>          NB is INTEGER
*>          The block size used for the storage of T.  K >= NB >= 1.
*>          This must be the same value of NB used to generate T
*>          in CGEQRT.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*>          V is COMPLEX*16 array, dimension (LDV,K)
*>          The i-th column must contain the vector which defines the
*>          elementary reflector H(i), for i = 1,2,...,k, as returned by
*>          CGEQRT in the first K columns of its array argument A.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of the array V.
*>          If SIDE = 'L', LDA >= max(1,M);
*>          if SIDE = 'R', LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*>          T is COMPLEX*16 array, dimension (LDT,K)
*>          The upper triangular factors of the block reflectors
*>          as returned by CGEQRT, stored as a NB-by-N matrix.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*>          LDT is INTEGER
*>          The leading dimension of the array T.  LDT >= NB.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is COMPLEX*16 array, dimension (LDC,N)
*>          On entry, the M-by-N matrix C.
*>          On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array. The dimension of WORK is
*>           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2013
*
*> \ingroup complex16GEcomputational
*
*  =====================================================================
      SUBROUTINE ZGEMQRT( SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT, 
     $                   C, LDC, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.5.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2013
*
*     .. Scalar Arguments ..
      CHARACTER SIDE, TRANS
      INTEGER   INFO, K, LDV, LDC, M, N, NB, LDT
*     ..
*     .. Array Arguments ..
      COMPLEX*16   V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     ..
*     .. Local Scalars ..
      LOGICAL            LEFT, RIGHT, TRAN, NOTRAN
      INTEGER            I, IB, LDWORK, KF, Q
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZLARFB
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     .. Test the input arguments ..
*
      INFO   = 0
      LEFT   = LSAME( SIDE,  'L' )
      RIGHT  = LSAME( SIDE,  'R' )
      TRAN   = LSAME( TRANS, 'C' )
      NOTRAN = LSAME( TRANS, 'N' )
*      
      IF( LEFT ) THEN
         LDWORK = MAX( 1, N )
         Q = M
      ELSE IF ( RIGHT ) THEN
         LDWORK = MAX( 1, M )
         Q = N
      END IF
      IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
         INFO = -1
      ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( K.LT.0 .OR. K.GT.Q ) THEN
         INFO = -5
      ELSE IF( NB.LT.1 .OR. (NB.GT.K .AND. K.GT.0)) THEN
         INFO = -6
      ELSE IF( LDV.LT.MAX( 1, Q ) ) THEN
         INFO = -8
      ELSE IF( LDT.LT.NB ) THEN
         INFO = -10
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -12
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGEMQRT', -INFO )
         RETURN
      END IF
*
*     .. Quick return if possible ..
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
*
      IF( LEFT .AND. TRAN ) THEN
*
         DO I = 1, K, NB
            IB = MIN( NB, K-I+1 )
            CALL ZLARFB( 'L', 'C', 'F', 'C', M-I+1, N, IB, 
     $                   V( I, I ), LDV, T( 1, I ), LDT, 
     $                   C( I, 1 ), LDC, WORK, LDWORK )
         END DO
*         
      ELSE IF( RIGHT .AND. NOTRAN ) THEN
*
         DO I = 1, K, NB
            IB = MIN( NB, K-I+1 )
            CALL ZLARFB( 'R', 'N', 'F', 'C', M, N-I+1, IB, 
     $                   V( I, I ), LDV, T( 1, I ), LDT, 
     $                   C( 1, I ), LDC, WORK, LDWORK )
         END DO
*
      ELSE IF( LEFT .AND. NOTRAN ) THEN
*
         KF = ((K-1)/NB)*NB+1
         DO I = KF, 1, -NB
            IB = MIN( NB, K-I+1 )         
            CALL ZLARFB( 'L', 'N', 'F', 'C', M-I+1, N, IB, 
     $                   V( I, I ), LDV, T( 1, I ), LDT, 
     $                   C( I, 1 ), LDC, WORK, LDWORK )
         END DO
*
      ELSE IF( RIGHT .AND. TRAN ) THEN
*
         KF = ((K-1)/NB)*NB+1
         DO I = KF, 1, -NB
            IB = MIN( NB, K-I+1 )         
            CALL ZLARFB( 'R', 'C', 'F', 'C', M, N-I+1, IB, 
     $                   V( I, I ), LDV, T( 1, I ), LDT, 
     $                   C( 1, I ), LDC, WORK, LDWORK )
         END DO
*
      END IF
*
      RETURN
*
*     End of ZGEMQRT
*
      END