#[repr(C)]pub struct Complex<T> {
pub re: T,
pub im: T,
}Expand description
A complex number in Cartesian form.
Representation and Foreign Function Interface Compatibility
Complex<T> is memory layout compatible with an array [T; 2].
Note that Complex<F> where F is a floating point type is only memory
layout compatible with C’s complex types, not necessarily calling
convention compatible. This means that for FFI you can only pass
Complex<F> behind a pointer, not as a value.
Examples
Example of extern function declaration.
use num_complex::Complex;
use std::os::raw::c_int;
extern "C" {
fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>,
x: *const Complex<f64>, incx: *const c_int,
y: *mut Complex<f64>, incy: *const c_int);
}Fields§
§re: TReal portion of the complex number
im: TImaginary portion of the complex number
Implementations§
source§impl<T> Complex<T>where
T: Clone + Num,
impl<T> Complex<T>where T: Clone + Num,
source§impl<T> Complex<T>where
T: Clone + Signed,
impl<T> Complex<T>where T: Clone + Signed,
sourcepub fn l1_norm(&self) -> T
pub fn l1_norm(&self) -> T
Returns the L1 norm |re| + |im| – the Manhattan distance from the origin.
source§impl<T> Complex<T>where
T: Float,
impl<T> Complex<T>where T: Float,
sourcepub fn to_polar(self) -> (T, T)
pub fn to_polar(self) -> (T, T)
Convert to polar form (r, theta), such that
self = r * exp(i * theta)
sourcepub fn from_polar(r: T, theta: T) -> Complex<T>
pub fn from_polar(r: T, theta: T) -> Complex<T>
Convert a polar representation into a complex number.
sourcepub fn exp(self) -> Complex<T>
pub fn exp(self) -> Complex<T>
Computes e^(self), where e is the base of the natural logarithm.
sourcepub fn ln(self) -> Complex<T>
pub fn ln(self) -> Complex<T>
Computes the principal value of natural logarithm of self.
This function has one branch cut:
(-∞, 0], continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π.
sourcepub fn sqrt(self) -> Complex<T>
pub fn sqrt(self) -> Complex<T>
Computes the principal value of the square root of self.
This function has one branch cut:
(-∞, 0), continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2.
sourcepub fn cbrt(self) -> Complex<T>
pub fn cbrt(self) -> Complex<T>
Computes the principal value of the cube root of self.
This function has one branch cut:
(-∞, 0), continuous from above.
The branch satisfies -π/3 ≤ arg(cbrt(z)) ≤ π/3.
Note that this does not match the usual result for the cube root of
negative real numbers. For example, the real cube root of -8 is -2,
but the principal complex cube root of -8 is 1 + i√3.
sourcepub fn log(self, base: T) -> Complex<T>
pub fn log(self, base: T) -> Complex<T>
Returns the logarithm of self with respect to an arbitrary base.
sourcepub fn expf(self, base: T) -> Complex<T>
pub fn expf(self, base: T) -> Complex<T>
Raises a floating point number to the complex power self.
sourcepub fn asin(self) -> Complex<T>
pub fn asin(self) -> Complex<T>
Computes the principal value of the inverse sine of self.
This function has two branch cuts:
(-∞, -1), continuous from above.(1, ∞), continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2.
sourcepub fn acos(self) -> Complex<T>
pub fn acos(self) -> Complex<T>
Computes the principal value of the inverse cosine of self.
This function has two branch cuts:
(-∞, -1), continuous from above.(1, ∞), continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π.
sourcepub fn atan(self) -> Complex<T>
pub fn atan(self) -> Complex<T>
Computes the principal value of the inverse tangent of self.
This function has two branch cuts:
(-∞i, -i], continuous from the left.[i, ∞i), continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2.
sourcepub fn asinh(self) -> Complex<T>
pub fn asinh(self) -> Complex<T>
Computes the principal value of inverse hyperbolic sine of self.
This function has two branch cuts:
(-∞i, -i), continuous from the left.(i, ∞i), continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2.
sourcepub fn acosh(self) -> Complex<T>
pub fn acosh(self) -> Complex<T>
Computes the principal value of inverse hyperbolic cosine of self.
This function has one branch cut:
(-∞, 1), continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π and 0 ≤ Re(acosh(z)) < ∞.
sourcepub fn atanh(self) -> Complex<T>
pub fn atanh(self) -> Complex<T>
Computes the principal value of inverse hyperbolic tangent of self.
This function has two branch cuts:
(-∞, -1], continuous from above.[1, ∞), continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2.
sourcepub fn finv(self) -> Complex<T>
pub fn finv(self) -> Complex<T>
Returns 1/self using floating-point operations.
This may be more accurate than the generic self.inv() in cases
where self.norm_sqr() would overflow to ∞ or underflow to 0.
Examples
use num_complex::Complex64;
let c = Complex64::new(1e300, 1e300);
// The generic `inv()` will overflow.
assert!(!c.inv().is_normal());
// But we can do better for `Float` types.
let inv = c.finv();
assert!(inv.is_normal());
println!("{:e}", inv);
let expected = Complex64::new(5e-301, -5e-301);
assert!((inv - expected).norm() < 1e-315);sourcepub fn fdiv(self, other: Complex<T>) -> Complex<T>
pub fn fdiv(self, other: Complex<T>) -> Complex<T>
Returns self/other using floating-point operations.
This may be more accurate than the generic Div implementation in cases
where other.norm_sqr() would overflow to ∞ or underflow to 0.
Examples
use num_complex::Complex64;
let a = Complex64::new(2.0, 3.0);
let b = Complex64::new(1e300, 1e300);
// Generic division will overflow.
assert!(!(a / b).is_normal());
// But we can do better for `Float` types.
let quotient = a.fdiv(b);
assert!(quotient.is_normal());
println!("{:e}", quotient);
let expected = Complex64::new(2.5e-300, 5e-301);
assert!((quotient - expected).norm() < 1e-315);Trait Implementations§
source§impl<'a, S, D> Add<&'a ArrayBase<S, D>> for Complex<f32>where
S: Data<Elem = Complex<f32>>,
D: Dimension,
impl<'a, S, D> Add<&'a ArrayBase<S, D>> for Complex<f32>where S: Data<Elem = Complex<f32>>, D: Dimension,
source§impl<'a, S, D> Add<&'a ArrayBase<S, D>> for Complex<f64>where
S: Data<Elem = Complex<f64>>,
D: Dimension,
impl<'a, S, D> Add<&'a ArrayBase<S, D>> for Complex<f64>where S: Data<Elem = Complex<f64>>, D: Dimension,
source§impl<S, D> Add<ArrayBase<S, D>> for Complex<f32>where
S: DataOwned<Elem = Complex<f32>> + DataMut,
D: Dimension,
impl<S, D> Add<ArrayBase<S, D>> for Complex<f32>where S: DataOwned<Elem = Complex<f32>> + DataMut, D: Dimension,
source§impl<S, D> Add<ArrayBase<S, D>> for Complex<f64>where
S: DataOwned<Elem = Complex<f64>> + DataMut,
D: Dimension,
impl<S, D> Add<ArrayBase<S, D>> for Complex<f64>where S: DataOwned<Elem = Complex<f64>> + DataMut, D: Dimension,
source§impl<'a, T> AddAssign<&'a Complex<T>> for Complex<T>where
T: Clone + NumAssign,
impl<'a, T> AddAssign<&'a Complex<T>> for Complex<T>where T: Clone + NumAssign,
source§fn add_assign(&mut self, other: &Complex<T>)
fn add_assign(&mut self, other: &Complex<T>)
+= operation. Read moresource§impl<'a, T> AddAssign<&'a T> for Complex<T>where
T: Clone + NumAssign,
impl<'a, T> AddAssign<&'a T> for Complex<T>where T: Clone + NumAssign,
source§fn add_assign(&mut self, other: &T)
fn add_assign(&mut self, other: &T)
+= operation. Read moresource§impl<T> AddAssign<Complex<T>> for Complex<T>where
T: Clone + NumAssign,
impl<T> AddAssign<Complex<T>> for Complex<T>where T: Clone + NumAssign,
source§fn add_assign(&mut self, other: Complex<T>)
fn add_assign(&mut self, other: Complex<T>)
+= operation. Read moresource§impl<T> AddAssign<T> for Complex<T>where
T: Clone + NumAssign,
impl<T> AddAssign<T> for Complex<T>where T: Clone + NumAssign,
source§fn add_assign(&mut self, other: T)
fn add_assign(&mut self, other: T)
+= operation. Read moresource§impl<T, U> AsPrimitive<U> for Complex<T>where
T: AsPrimitive<U>,
U: 'static + Copy,
impl<T, U> AsPrimitive<U> for Complex<T>where T: AsPrimitive<U>, U: 'static + Copy,
source§impl<'a, S, D> Div<&'a ArrayBase<S, D>> for Complex<f32>where
S: Data<Elem = Complex<f32>>,
D: Dimension,
impl<'a, S, D> Div<&'a ArrayBase<S, D>> for Complex<f32>where S: Data<Elem = Complex<f32>>, D: Dimension,
source§impl<'a, S, D> Div<&'a ArrayBase<S, D>> for Complex<f64>where
S: Data<Elem = Complex<f64>>,
D: Dimension,
impl<'a, S, D> Div<&'a ArrayBase<S, D>> for Complex<f64>where S: Data<Elem = Complex<f64>>, D: Dimension,
source§impl<S, D> Div<ArrayBase<S, D>> for Complex<f32>where
S: DataOwned<Elem = Complex<f32>> + DataMut,
D: Dimension,
impl<S, D> Div<ArrayBase<S, D>> for Complex<f32>where S: DataOwned<Elem = Complex<f32>> + DataMut, D: Dimension,
source§impl<S, D> Div<ArrayBase<S, D>> for Complex<f64>where
S: DataOwned<Elem = Complex<f64>> + DataMut,
D: Dimension,
impl<S, D> Div<ArrayBase<S, D>> for Complex<f64>where S: DataOwned<Elem = Complex<f64>> + DataMut, D: Dimension,
source§impl<'a, T> DivAssign<&'a Complex<T>> for Complex<T>where
T: Clone + NumAssign,
impl<'a, T> DivAssign<&'a Complex<T>> for Complex<T>where T: Clone + NumAssign,
source§fn div_assign(&mut self, other: &Complex<T>)
fn div_assign(&mut self, other: &Complex<T>)
/= operation. Read moresource§impl<'a, T> DivAssign<&'a T> for Complex<T>where
T: Clone + NumAssign,
impl<'a, T> DivAssign<&'a T> for Complex<T>where T: Clone + NumAssign,
source§fn div_assign(&mut self, other: &T)
fn div_assign(&mut self, other: &T)
/= operation. Read moresource§impl<T> DivAssign<Complex<T>> for Complex<T>where
T: Clone + NumAssign,
impl<T> DivAssign<Complex<T>> for Complex<T>where T: Clone + NumAssign,
source§fn div_assign(&mut self, other: Complex<T>)
fn div_assign(&mut self, other: Complex<T>)
/= operation. Read moresource§impl<T> DivAssign<T> for Complex<T>where
T: Clone + NumAssign,
impl<T> DivAssign<T> for Complex<T>where T: Clone + NumAssign,
source§fn div_assign(&mut self, other: T)
fn div_assign(&mut self, other: T)
/= operation. Read moresource§impl<T> FromPrimitive for Complex<T>where
T: FromPrimitive + Num,
impl<T> FromPrimitive for Complex<T>where T: FromPrimitive + Num,
source§fn from_usize(n: usize) -> Option<Complex<T>>
fn from_usize(n: usize) -> Option<Complex<T>>
usize to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_isize(n: isize) -> Option<Complex<T>>
fn from_isize(n: isize) -> Option<Complex<T>>
isize to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_u8(n: u8) -> Option<Complex<T>>
fn from_u8(n: u8) -> Option<Complex<T>>
u8 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_u16(n: u16) -> Option<Complex<T>>
fn from_u16(n: u16) -> Option<Complex<T>>
u16 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_u32(n: u32) -> Option<Complex<T>>
fn from_u32(n: u32) -> Option<Complex<T>>
u32 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_u64(n: u64) -> Option<Complex<T>>
fn from_u64(n: u64) -> Option<Complex<T>>
u64 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_i8(n: i8) -> Option<Complex<T>>
fn from_i8(n: i8) -> Option<Complex<T>>
i8 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_i16(n: i16) -> Option<Complex<T>>
fn from_i16(n: i16) -> Option<Complex<T>>
i16 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_i32(n: i32) -> Option<Complex<T>>
fn from_i32(n: i32) -> Option<Complex<T>>
i32 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_i64(n: i64) -> Option<Complex<T>>
fn from_i64(n: i64) -> Option<Complex<T>>
i64 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_u128(n: u128) -> Option<Complex<T>>
fn from_u128(n: u128) -> Option<Complex<T>>
u128 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned. Read moresource§fn from_i128(n: i128) -> Option<Complex<T>>
fn from_i128(n: i128) -> Option<Complex<T>>
i128 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned. Read moresource§impl<'a, S, D> Mul<&'a ArrayBase<S, D>> for Complex<f32>where
S: Data<Elem = Complex<f32>>,
D: Dimension,
impl<'a, S, D> Mul<&'a ArrayBase<S, D>> for Complex<f32>where S: Data<Elem = Complex<f32>>, D: Dimension,
source§impl<'a, S, D> Mul<&'a ArrayBase<S, D>> for Complex<f64>where
S: Data<Elem = Complex<f64>>,
D: Dimension,
impl<'a, S, D> Mul<&'a ArrayBase<S, D>> for Complex<f64>where S: Data<Elem = Complex<f64>>, D: Dimension,
source§impl<S, D> Mul<ArrayBase<S, D>> for Complex<f32>where
S: DataOwned<Elem = Complex<f32>> + DataMut,
D: Dimension,
impl<S, D> Mul<ArrayBase<S, D>> for Complex<f32>where S: DataOwned<Elem = Complex<f32>> + DataMut, D: Dimension,
source§impl<S, D> Mul<ArrayBase<S, D>> for Complex<f64>where
S: DataOwned<Elem = Complex<f64>> + DataMut,
D: Dimension,
impl<S, D> Mul<ArrayBase<S, D>> for Complex<f64>where S: DataOwned<Elem = Complex<f64>> + DataMut, D: Dimension,
source§impl<'a, 'b, T> MulAdd<&'b Complex<T>, &'a Complex<T>> for &'a Complex<T>where
T: Clone + Num + MulAdd<T, T, Output = T>,
impl<'a, 'b, T> MulAdd<&'b Complex<T>, &'a Complex<T>> for &'a Complex<T>where T: Clone + Num + MulAdd<T, T, Output = T>,
source§impl<T> MulAdd<Complex<T>, Complex<T>> for Complex<T>where
T: Clone + Num + MulAdd<T, T, Output = T>,
impl<T> MulAdd<Complex<T>, Complex<T>> for Complex<T>where T: Clone + Num + MulAdd<T, T, Output = T>,
source§impl<'a, 'b, T> MulAddAssign<&'a Complex<T>, &'b Complex<T>> for Complex<T>where
T: Clone + NumAssign + MulAddAssign<T, T>,
impl<'a, 'b, T> MulAddAssign<&'a Complex<T>, &'b Complex<T>> for Complex<T>where T: Clone + NumAssign + MulAddAssign<T, T>,
source§fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>)
fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>)
source§impl<T> MulAddAssign<Complex<T>, Complex<T>> for Complex<T>where
T: Clone + NumAssign + MulAddAssign<T, T>,
impl<T> MulAddAssign<Complex<T>, Complex<T>> for Complex<T>where T: Clone + NumAssign + MulAddAssign<T, T>,
source§fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>)
fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>)
source§impl<'a, T> MulAssign<&'a Complex<T>> for Complex<T>where
T: Clone + NumAssign,
impl<'a, T> MulAssign<&'a Complex<T>> for Complex<T>where T: Clone + NumAssign,
source§fn mul_assign(&mut self, other: &Complex<T>)
fn mul_assign(&mut self, other: &Complex<T>)
*= operation. Read moresource§impl<'a, T> MulAssign<&'a T> for Complex<T>where
T: Clone + NumAssign,
impl<'a, T> MulAssign<&'a T> for Complex<T>where T: Clone + NumAssign,
source§fn mul_assign(&mut self, other: &T)
fn mul_assign(&mut self, other: &T)
*= operation. Read moresource§impl<T> MulAssign<Complex<T>> for Complex<T>where
T: Clone + NumAssign,
impl<T> MulAssign<Complex<T>> for Complex<T>where T: Clone + NumAssign,
source§fn mul_assign(&mut self, other: Complex<T>)
fn mul_assign(&mut self, other: Complex<T>)
*= operation. Read moresource§impl<T> MulAssign<T> for Complex<T>where
T: Clone + NumAssign,
impl<T> MulAssign<T> for Complex<T>where T: Clone + NumAssign,
source§fn mul_assign(&mut self, other: T)
fn mul_assign(&mut self, other: T)
*= operation. Read moresource§impl<T> Num for Complex<T>where
T: Num + Clone,
impl<T> Num for Complex<T>where T: Num + Clone,
source§fn from_str_radix(
s: &str,
radix: u32
) -> Result<Complex<T>, <Complex<T> as Num>::FromStrRadixErr>
fn from_str_radix( s: &str, radix: u32 ) -> Result<Complex<T>, <Complex<T> as Num>::FromStrRadixErr>
Parses a +/- bi; ai +/- b; a; or bi where a and b are of type T
type FromStrRadixErr = ParseComplexError<<T as Num>::FromStrRadixErr>
source§impl<T> PartialEq<Complex<T>> for Complex<T>where
T: PartialEq<T>,
impl<T> PartialEq<Complex<T>> for Complex<T>where T: PartialEq<T>,
source§impl<'a, T> RemAssign<&'a Complex<T>> for Complex<T>where
T: Clone + NumAssign,
impl<'a, T> RemAssign<&'a Complex<T>> for Complex<T>where T: Clone + NumAssign,
source§fn rem_assign(&mut self, other: &Complex<T>)
fn rem_assign(&mut self, other: &Complex<T>)
%= operation. Read moresource§impl<'a, T> RemAssign<&'a T> for Complex<T>where
T: Clone + NumAssign,
impl<'a, T> RemAssign<&'a T> for Complex<T>where T: Clone + NumAssign,
source§fn rem_assign(&mut self, other: &T)
fn rem_assign(&mut self, other: &T)
%= operation. Read moresource§impl<T> RemAssign<Complex<T>> for Complex<T>where
T: Clone + NumAssign,
impl<T> RemAssign<Complex<T>> for Complex<T>where T: Clone + NumAssign,
source§fn rem_assign(&mut self, modulus: Complex<T>)
fn rem_assign(&mut self, modulus: Complex<T>)
%= operation. Read moresource§impl<T> RemAssign<T> for Complex<T>where
T: Clone + NumAssign,
impl<T> RemAssign<T> for Complex<T>where T: Clone + NumAssign,
source§fn rem_assign(&mut self, other: T)
fn rem_assign(&mut self, other: T)
%= operation. Read moresource§impl<'a, S, D> Sub<&'a ArrayBase<S, D>> for Complex<f32>where
S: Data<Elem = Complex<f32>>,
D: Dimension,
impl<'a, S, D> Sub<&'a ArrayBase<S, D>> for Complex<f32>where S: Data<Elem = Complex<f32>>, D: Dimension,
source§impl<'a, S, D> Sub<&'a ArrayBase<S, D>> for Complex<f64>where
S: Data<Elem = Complex<f64>>,
D: Dimension,
impl<'a, S, D> Sub<&'a ArrayBase<S, D>> for Complex<f64>where S: Data<Elem = Complex<f64>>, D: Dimension,
source§impl<S, D> Sub<ArrayBase<S, D>> for Complex<f32>where
S: DataOwned<Elem = Complex<f32>> + DataMut,
D: Dimension,
impl<S, D> Sub<ArrayBase<S, D>> for Complex<f32>where S: DataOwned<Elem = Complex<f32>> + DataMut, D: Dimension,
source§impl<S, D> Sub<ArrayBase<S, D>> for Complex<f64>where
S: DataOwned<Elem = Complex<f64>> + DataMut,
D: Dimension,
impl<S, D> Sub<ArrayBase<S, D>> for Complex<f64>where S: DataOwned<Elem = Complex<f64>> + DataMut, D: Dimension,
source§impl<'a, T> SubAssign<&'a Complex<T>> for Complex<T>where
T: Clone + NumAssign,
impl<'a, T> SubAssign<&'a Complex<T>> for Complex<T>where T: Clone + NumAssign,
source§fn sub_assign(&mut self, other: &Complex<T>)
fn sub_assign(&mut self, other: &Complex<T>)
-= operation. Read moresource§impl<'a, T> SubAssign<&'a T> for Complex<T>where
T: Clone + NumAssign,
impl<'a, T> SubAssign<&'a T> for Complex<T>where T: Clone + NumAssign,
source§fn sub_assign(&mut self, other: &T)
fn sub_assign(&mut self, other: &T)
-= operation. Read moresource§impl<T> SubAssign<Complex<T>> for Complex<T>where
T: Clone + NumAssign,
impl<T> SubAssign<Complex<T>> for Complex<T>where T: Clone + NumAssign,
source§fn sub_assign(&mut self, other: Complex<T>)
fn sub_assign(&mut self, other: Complex<T>)
-= operation. Read moresource§impl<T> SubAssign<T> for Complex<T>where
T: Clone + NumAssign,
impl<T> SubAssign<T> for Complex<T>where T: Clone + NumAssign,
source§fn sub_assign(&mut self, other: T)
fn sub_assign(&mut self, other: T)
-= operation. Read moresource§impl<T> ToPrimitive for Complex<T>where
T: ToPrimitive + Num,
impl<T> ToPrimitive for Complex<T>where T: ToPrimitive + Num,
source§fn to_usize(&self) -> Option<usize>
fn to_usize(&self) -> Option<usize>
self to a usize. If the value cannot be
represented by a usize, then None is returned.source§fn to_isize(&self) -> Option<isize>
fn to_isize(&self) -> Option<isize>
self to an isize. If the value cannot be
represented by an isize, then None is returned.source§fn to_u8(&self) -> Option<u8>
fn to_u8(&self) -> Option<u8>
self to a u8. If the value cannot be
represented by a u8, then None is returned.source§fn to_u16(&self) -> Option<u16>
fn to_u16(&self) -> Option<u16>
self to a u16. If the value cannot be
represented by a u16, then None is returned.source§fn to_u32(&self) -> Option<u32>
fn to_u32(&self) -> Option<u32>
self to a u32. If the value cannot be
represented by a u32, then None is returned.source§fn to_u64(&self) -> Option<u64>
fn to_u64(&self) -> Option<u64>
self to a u64. If the value cannot be
represented by a u64, then None is returned.source§fn to_i8(&self) -> Option<i8>
fn to_i8(&self) -> Option<i8>
self to an i8. If the value cannot be
represented by an i8, then None is returned.source§fn to_i16(&self) -> Option<i16>
fn to_i16(&self) -> Option<i16>
self to an i16. If the value cannot be
represented by an i16, then None is returned.source§fn to_i32(&self) -> Option<i32>
fn to_i32(&self) -> Option<i32>
self to an i32. If the value cannot be
represented by an i32, then None is returned.source§fn to_i64(&self) -> Option<i64>
fn to_i64(&self) -> Option<i64>
self to an i64. If the value cannot be
represented by an i64, then None is returned.source§fn to_u128(&self) -> Option<u128>
fn to_u128(&self) -> Option<u128>
self to a u128. If the value cannot be
represented by a u128 (u64 under the default implementation), then
None is returned. Read moresource§fn to_i128(&self) -> Option<i128>
fn to_i128(&self) -> Option<i128>
self to an i128. If the value cannot be
represented by an i128 (i64 under the default implementation), then
None is returned. Read more