ndarray 0.5.1

An N-dimensional array for general elements and for numerics. Lightweight array views and slicing; views support chunking and splitting.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std::cmp;
use std::ptr as std_ptr;
use std::slice;

use imp_prelude::*;

use arraytraits;
use dimension;
use iterators;
use error::{self, ShapeError};
use super::zipsl;
use {
    NdIndex,
    AxisChunksIter,
    AxisChunksIterMut,
    Elements,
    ElementsMut,
    Indexed,
    IndexedMut,
    InnerIter,
    InnerIterMut,
    AxisIter,
    AxisIterMut,
};
use stacking::stack;

impl<A, S, D> ArrayBase<S, D> where S: Data<Elem=A>, D: Dimension
{
    /// Return the total number of elements in the array.
    pub fn len(&self) -> usize {
        self.dim.size()
    }

    /// Return the shape of the array.
    pub fn dim(&self) -> D {
        self.dim.clone()
    }

    /// Return the shape of the array as a slice.
    pub fn shape(&self) -> &[Ix] {
        self.dim.slice()
    }

    /// Return the strides of the array
    pub fn strides(&self) -> &[Ixs] {
        let s = self.strides.slice();
        // reinterpret unsigned integer as signed
        unsafe {
            slice::from_raw_parts(s.as_ptr() as *const _, s.len())
        }
    }

    /// Return the number of dimensions (axes) in the array
    pub fn ndim(&self) -> usize {
        self.dim.ndim()
    }

    /// Return a read-only view of the array
    pub fn view(&self) -> ArrayView<A, D> {
        debug_assert!(self.pointer_is_inbounds());
        unsafe {
            ArrayView::new_(self.ptr, self.dim.clone(), self.strides.clone())
        }
    }

    /// Return a read-write view of the array
    pub fn view_mut(&mut self) -> ArrayViewMut<A, D>
        where S: DataMut,
    {
        self.ensure_unique();
        unsafe {
            ArrayViewMut::new_(self.ptr, self.dim.clone(), self.strides.clone())
        }
    }

    /// Return an uniquely owned copy of the array
    pub fn to_owned(&self) -> OwnedArray<A, D>
        where A: Clone
    {
        let (data, strides) = if let Some(slc) = self.as_slice_memory_order() {
            (slc.to_vec(), self.strides.clone())
        } else {
            (self.iter().cloned().collect(), self.dim.default_strides())
        };
        unsafe {
            ArrayBase::from_shape_vec_unchecked(self.dim.clone().strides(strides), data)
        }
    }

    /// Return a shared ownership (copy on write) array.
    pub fn to_shared(&self) -> RcArray<A, D>
        where A: Clone
    {
        // FIXME: Avoid copying if it’s already an RcArray.
        self.to_owned().into_shared()
    }

    /// Turn the array into a shared ownership (copy on write) array,
    /// without any copying.
    pub fn into_shared(self) -> RcArray<A, D>
        where S: DataOwned,
    {
        let data = self.data.into_shared();
        ArrayBase {
            data: data,
            ptr: self.ptr,
            dim: self.dim,
            strides: self.strides,
        }
    }

    /// Return an iterator of references to the elements of the array.
    ///
    /// Iterator element type is `&A`.
    pub fn iter(&self) -> Elements<A, D> {
        debug_assert!(self.pointer_is_inbounds());
        self.view().into_iter_()
    }

    /// Return an iterator of mutable references to the elements of the array.
    ///
    /// Iterator element type is `&mut A`.
    pub fn iter_mut(&mut self) -> ElementsMut<A, D>
        where S: DataMut,
    {
        self.view_mut().into_iter_()
    }

    /// Return an iterator of indexes and references to the elements of the array.
    ///
    /// Iterator element type is `(D, &A)`.
    pub fn indexed_iter(&self) -> Indexed<A, D> {
        Indexed(self.view().into_elements_base())
    }

    /// Return an iterator of indexes and mutable references to the elements of the array.
    ///
    /// Iterator element type is `(D, &mut A)`.
    pub fn indexed_iter_mut(&mut self) -> IndexedMut<A, D>
        where S: DataMut,
    {
        IndexedMut(self.view_mut().into_elements_base())
    }


    /// Return a sliced array.
    ///
    /// See [*Slicing*](#slicing) for full documentation.
    /// See also [`D::SliceArg`].
    ///
    /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg
    ///
    /// **Panics** if an index is out of bounds or stride is zero.<br>
    /// (**Panics** if `D` is `Vec` and `indexes` does not match the number of array axes.)
    pub fn slice(&self, indexes: &D::SliceArg) -> ArrayView<A, D> {
        let mut arr = self.view();
        arr.islice(indexes);
        arr
    }

    /// Return a sliced read-write view of the array.
    ///
    /// See also [`D::SliceArg`].
    ///
    /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg
    ///
    /// **Panics** if an index is out of bounds or stride is zero.<br>
    /// (**Panics** if `D` is `Vec` and `indexes` does not match the number of array axes.)
    pub fn slice_mut(&mut self, indexes: &D::SliceArg) -> ArrayViewMut<A, D>
        where S: DataMut
    {
        let mut arr = self.view_mut();
        arr.islice(indexes);
        arr
    }

    /// Slice the array’s view in place.
    ///
    /// See also [`D::SliceArg`].
    ///
    /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg
    ///
    /// **Panics** if an index is out of bounds or stride is zero.<br>
    /// (**Panics** if `D` is `Vec` and `indexes` does not match the number of array axes.)
    pub fn islice(&mut self, indexes: &D::SliceArg) {
        let offset = D::do_slices(&mut self.dim, &mut self.strides, indexes);
        unsafe {
            self.ptr = self.ptr.offset(offset);
        }
        debug_assert!(self.pointer_is_inbounds());
    }



    /// Return a reference to the element at `index`, or return `None`
    /// if the index is out of bounds.
    ///
    /// Arrays also support indexing syntax: `array[index]`.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[1., 2.],
    ///                [3., 4.]]);
    ///
    /// assert!(
    ///     a.get((0, 1)) == Some(&2.) &&
    ///     a.get((0, 2)) == None &&
    ///     a[(0, 1)] == 2. &&
    ///     a[[0, 1]] == 2.
    /// );
    /// ```
    pub fn get<I>(&self, index: I) -> Option<&A>
        where I: NdIndex<Dim=D>,
    {
        let ptr = self.ptr;
        index.index_checked(&self.dim, &self.strides)
             .map(move |offset| unsafe { &*ptr.offset(offset) })
    }

    /// Return a mutable reference to the element at `index`, or return `None`
    /// if the index is out of bounds.
    pub fn get_mut<I>(&mut self, index: I) -> Option<&mut A>
        where S: DataMut,
              I: NdIndex<Dim=D>,
    {
        let ptr = self.as_mut_ptr();
        index.index_checked(&self.dim, &self.strides)
             .map(move |offset| unsafe { &mut *ptr.offset(offset) })
    }

    /// Perform *unchecked* array indexing.
    ///
    /// Return a reference to the element at `index`.
    ///
    /// **Note:** only unchecked for non-debug builds of ndarray.
    #[inline]
    pub unsafe fn uget(&self, index: D) -> &A {
        arraytraits::debug_bounds_check(self, &index);
        let off = D::stride_offset(&index, &self.strides);
        &*self.ptr.offset(off)
    }

    /// Perform *unchecked* array indexing.
    ///
    /// Return a mutable reference to the element at `index`.
    ///
    /// **Note:** Only unchecked for non-debug builds of ndarray.<br>
    /// **Note:** The array must be uniquely held when mutating it.
    #[inline]
    pub unsafe fn uget_mut(&mut self, index: D) -> &mut A
        where S: DataMut
    {
        debug_assert!(self.data.is_unique());
        arraytraits::debug_bounds_check(self, &index);
        let off = D::stride_offset(&index, &self.strides);
        &mut *self.ptr.offset(off)
    }

    /// Swap elements at indices `index1` and `index2`.
    ///
    /// Indices may be equal.
    ///
    /// ***Panics*** if an index is out of bounds.
    pub fn swap<I>(&mut self, index1: I, index2: I)
        where S: DataMut,
              I: NdIndex<Dim=D>,
    {
        let ptr1: *mut _ = &mut self[index1];
        let ptr2: *mut _ = &mut self[index2];
        unsafe {
            std_ptr::swap(ptr1, ptr2);
        }
    }

    // `get` for zero-dimensional arrays
    // panics if dimension is not zero. otherwise an element is always present.
    fn get_0d(&self) -> &A {
        assert!(self.ndim() == 0);
        unsafe {
            &*self.as_ptr()
        }
    }

    // `uget` for one-dimensional arrays
    unsafe fn uget_1d(&self, i: Ix) -> &A {
        debug_assert!(self.ndim() <= 1);
        debug_assert!(i < self.len());
        let offset = self.strides()[0] * (i as Ixs);
        &*self.as_ptr().offset(offset)
    }

    // `uget_mut` for one-dimensional arrays
    unsafe fn uget_mut_1d(&mut self, i: Ix) -> &mut A
        where S: DataMut
    {
        debug_assert!(self.ndim() <= 1);
        debug_assert!(i < self.len());
        let offset = self.strides()[0] * (i as Ixs);
        &mut *self.as_mut_ptr().offset(offset)
    }


    /// Along `axis`, select the subview `index` and return a
    /// view with that axis removed.
    ///
    /// See [*Subviews*](#subviews) for full documentation.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr2, ArrayView, Axis};
    ///
    /// let a = arr2(&[[1., 2.],    // -- axis 0, row 0
    ///                [3., 4.],    // -- axis 0, row 1
    ///                [5., 6.]]);  // -- axis 0, row 2
    /// //               \   \
    /// //                \   axis 1, column 1
    /// //                 axis 1, column 0
    /// assert!(
    ///     a.subview(Axis(0), 1) == ArrayView::from(&[3., 4.]) &&
    ///     a.subview(Axis(1), 1) == ArrayView::from(&[2., 4., 6.])
    /// );
    /// ```
    pub fn subview(&self, axis: Axis, index: Ix)
        -> ArrayView<A, <D as RemoveAxis>::Smaller>
        where D: RemoveAxis,
    {
        self.view().into_subview(axis, index)
    }

    /// Along `axis`, select the subview `index` and return a read-write view
    /// with the axis removed.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr2, aview2, Axis};
    ///
    /// let mut a = arr2(&[[1., 2.],
    ///                    [3., 4.]]);
    ///
    /// {
    ///     let mut column1 = a.subview_mut(Axis(1), 1);
    ///     column1 += 10.;
    /// }
    ///
    /// assert!(
    ///     a == aview2(&[[1., 12.],
    ///                   [3., 14.]])
    /// );
    /// ```
    pub fn subview_mut(&mut self, axis: Axis, index: Ix)
        -> ArrayViewMut<A, D::Smaller>
        where S: DataMut,
              D: RemoveAxis,
    {
        self.view_mut().into_subview(axis, index)
    }

    /// Collapse dimension `axis` into length one,
    /// and select the subview of `index` along that axis.
    ///
    /// **Panics** if `index` is past the length of the axis.
    pub fn isubview(&mut self, axis: Axis, index: Ix) {
        dimension::do_sub(&mut self.dim, &mut self.ptr, &self.strides,
                          axis.axis(), index)
    }

    /// Along `axis`, select the subview `index` and return `self`
    /// with that axis removed.
    ///
    /// See [`.subview()`](#method.subview) and [*Subviews*](#subviews) for full documentation.
    pub fn into_subview(mut self, axis: Axis, index: Ix)
        -> ArrayBase<S, <D as RemoveAxis>::Smaller>
        where D: RemoveAxis,
    {
        self.isubview(axis, index);
        // don't use reshape -- we always know it will fit the size,
        // and we can use remove_axis on the strides as well
        ArrayBase {
            data: self.data,
            ptr: self.ptr,
            dim: self.dim.remove_axis(axis),
            strides: self.strides.remove_axis(axis),
        }
    }

    /// Along `axis`, select arbitrary subviews corresponding to `indices`
    /// and and copy them into a new array.
    ///
    /// **Panics** if `axis` or an element of `indices` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr2, Axis};
    ///
    /// let x = arr2(&[[0., 1.],
    ///                [2., 3.],
    ///                [4., 5.],
    ///                [6., 7.],
    ///                [8., 9.]]);
    ///
    /// let r = x.select(Axis(0), &[0, 4, 3]);
    /// assert!(
    ///         r == arr2(&[[0., 1.],
    ///                     [8., 9.],
    ///                     [6., 7.]])
    ///);
    /// ```
    pub fn select(&self, axis: Axis, indices: &[Ix]) -> OwnedArray<A, D>
        where A: Copy,
              D: RemoveAxis,
    {
        let mut subs = vec![self.view(); indices.len()];
        for (&i, sub) in zipsl(indices, &mut subs[..]) {
            sub.isubview(axis, i);
        }
        if subs.is_empty() {
            let mut dim = self.dim();
            dim.set_axis(axis, 0);
            unsafe {
                OwnedArray::from_shape_vec_unchecked(dim, vec![])
            }
        } else {
            stack(axis, &subs).unwrap()
        }
    }

    /// Return an iterator that traverses over all dimensions but the innermost,
    /// and yields each inner row.
    ///
    /// For example, in a 2 × 2 × 3 array, the iterator element
    /// is a row of 3 elements (and there are 2 × 2 = 4 rows in total).
    ///
    /// Iterator element is `ArrayView<A, Ix>` (1D array view).
    ///
    /// ```
    /// use ndarray::arr3;
    /// let a = arr3(&[[[ 0,  1,  2],    // -- row 0, 0
    ///                 [ 3,  4,  5]],   // -- row 0, 1
    ///                [[ 6,  7,  8],    // -- row 1, 0
    ///                 [ 9, 10, 11]]]); // -- row 1, 1
    /// // `inner_iter` yields the four inner rows of the 3D array.
    /// let mut row_sums = a.inner_iter().map(|v| v.scalar_sum());
    /// assert_eq!(row_sums.collect::<Vec<_>>(), vec![3, 12, 21, 30]);
    /// ```
    pub fn inner_iter(&self) -> InnerIter<A, D> {
        iterators::new_inner_iter(self.view())
    }

    /// Return an iterator that traverses over all dimensions but the innermost,
    /// and yields each inner row.
    ///
    /// Iterator element is `ArrayViewMut<A, Ix>` (1D read-write array view).
    pub fn inner_iter_mut(&mut self) -> InnerIterMut<A, D>
        where S: DataMut
    {
        iterators::new_inner_iter_mut(self.view_mut())
    }

    /// Return an iterator that traverses over the outermost dimension
    /// and yields each subview.
    ///
    /// For example, in a 2 × 2 × 3 array, the iterator element
    /// is a 2 × 3 subview (and there are 2 in total).
    ///
    /// Iterator element is `ArrayView<A, D::Smaller>` (read-only array view).
    ///
    /// ```
    /// use ndarray::{arr3, Axis};
    ///
    /// let a = arr3(&[[[ 0,  1,  2],    // \ axis 0, submatrix 0
    ///                 [ 3,  4,  5]],   // /
    ///                [[ 6,  7,  8],    // \ axis 0, submatrix 1
    ///                 [ 9, 10, 11]]]); // /
    /// // `outer_iter` yields the two submatrices along axis 0.
    /// let mut iter = a.outer_iter();
    /// assert_eq!(iter.next().unwrap(), a.subview(Axis(0), 0));
    /// assert_eq!(iter.next().unwrap(), a.subview(Axis(0), 1));
    /// ```
    #[allow(deprecated)]
    pub fn outer_iter(&self) -> AxisIter<A, D::Smaller>
        where D: RemoveAxis,
    {
        self.view().into_outer_iter()
    }

    /// Return an iterator that traverses over the outermost dimension
    /// and yields each subview.
    ///
    /// Iterator element is `ArrayViewMut<A, D::Smaller>` (read-write array view).
    #[allow(deprecated)]
    pub fn outer_iter_mut(&mut self) -> AxisIterMut<A, D::Smaller>
        where S: DataMut,
              D: RemoveAxis,
    {
        self.view_mut().into_outer_iter()
    }

    /// Return an iterator that traverses over `axis`
    /// and yields each subview along it.
    ///
    /// For example, in a 3 × 5 × 5 array, with `axis` equal to `Axis(2)`,
    /// the iterator element
    /// is a 3 × 5 subview (and there are 5 in total), as shown
    /// in the picture below.
    ///
    /// Iterator element is `ArrayView<A, D::Smaller>` (read-only array view).
    ///
    /// See [*Subviews*](#subviews) for full documentation.
    ///
    /// **Panics** if `axis` is out of bounds.
    ///
    /// <img src="axis_iter.svg" height="250px">
    pub fn axis_iter(&self, axis: Axis) -> AxisIter<A, D::Smaller>
        where D: RemoveAxis,
    {
        iterators::new_axis_iter(self.view(), axis.axis())
    }


    /// Return an iterator that traverses over `axis`
    /// and yields each mutable subview along it.
    ///
    /// Iterator element is `ArrayViewMut<A, D::Smaller>`
    /// (read-write array view).
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn axis_iter_mut(&mut self, axis: Axis) -> AxisIterMut<A, D::Smaller>
        where S: DataMut,
              D: RemoveAxis,
    {
        iterators::new_axis_iter_mut(self.view_mut(), axis.axis())
    }


    /// Return an iterator that traverses over `axis` by chunks of `size`,
    /// yielding non-overlapping views along that axis.
    ///
    /// Iterator element is `ArrayView<A, D>`
    ///
    /// The last view may have less elements if `size` does not divide
    /// the axis' dimension.
    ///
    /// **Panics** if `axis` is out of bounds.
    ///
    /// ```
    /// use ndarray::OwnedArray;
    /// use ndarray::{arr3, Axis};
    ///
    /// let a = OwnedArray::from_iter(0..28).into_shape((2, 7, 2)).unwrap();
    /// let mut iter = a.axis_chunks_iter(Axis(1), 2);
    ///
    /// // first iteration yields a 2 × 2 × 2 view
    /// assert_eq!(iter.next().unwrap(),
    ///            arr3(&[[[ 0,  1], [ 2, 3]],
    ///                   [[14, 15], [16, 17]]]));
    ///
    /// // however the last element is a 2 × 1 × 2 view since 7 % 2 == 1
    /// assert_eq!(iter.next_back().unwrap(), arr3(&[[[12, 13]],
    ///                                              [[26, 27]]]));
    /// ```
    pub fn axis_chunks_iter(&self, axis: Axis, size: usize) -> AxisChunksIter<A, D> {
        iterators::new_chunk_iter(self.view(), axis.axis(), size)
    }

    /// Return an iterator that traverses over `axis` by chunks of `size`,
    /// yielding non-overlapping read-write views along that axis.
    ///
    /// Iterator element is `ArrayViewMut<A, D>`
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn axis_chunks_iter_mut(&mut self, axis: Axis, size: usize)
        -> AxisChunksIterMut<A, D>
        where S: DataMut
    {
        iterators::new_chunk_iter_mut(self.view_mut(), axis.axis(), size)
    }

    // Return (length, stride) for diagonal
    fn diag_params(&self) -> (Ix, Ixs) {
        /* empty shape has len 1 */
        let len = self.dim.slice().iter().cloned().min().unwrap_or(1);
        let stride = self.strides()
                         .iter()
                         .fold(0, |sum, s| sum + s);
        (len, stride)
    }

    /// Return an view of the diagonal elements of the array.
    ///
    /// The diagonal is simply the sequence indexed by *(0, 0, .., 0)*,
    /// *(1, 1, ..., 1)* etc as long as all axes have elements.
    pub fn diag(&self) -> ArrayView<A, Ix> {
        self.view().into_diag()
    }

    /// Return a read-write view over the diagonal elements of the array.
    pub fn diag_mut(&mut self) -> ArrayViewMut<A, Ix>
        where S: DataMut,
    {
        self.view_mut().into_diag()
    }

    /// Return the diagonal as a one-dimensional array.
    pub fn into_diag(self) -> ArrayBase<S, Ix> {
        let (len, stride) = self.diag_params();
        ArrayBase {
            data: self.data,
            ptr: self.ptr,
            dim: len,
            strides: stride as Ix,
        }
    }

    /// Make the array unshared.
    ///
    /// This method is mostly only useful with unsafe code.
    fn ensure_unique(&mut self)
        where S: DataMut
    {
        debug_assert!(self.pointer_is_inbounds());
        S::ensure_unique(self);
        debug_assert!(self.pointer_is_inbounds());
    }

    /// Return `true` if the array data is laid out in contiguous “C order” in
    /// memory (where the last index is the most rapidly varying).
    ///
    /// Return `false` otherwise, i.e the array is possibly not
    /// contiguous in memory, it has custom strides, etc.
    pub fn is_standard_layout(&self) -> bool {
        let defaults = self.dim.default_strides();
        if self.strides == defaults {
            return true;
        }
        if self.ndim() == 1 { return false; }
        // check all dimensions -- a dimension of length 1 can have unequal strides
        for (&dim, (&s, &ds)) in zipsl(self.dim.slice(),
                                       zipsl(self.strides(), defaults.slice()))
        {
            if dim != 1 && s != (ds as Ixs) {
                return false;
            }
        }
        true
    }

    fn is_contiguous(&self) -> bool {
        let defaults = self.dim.default_strides();
        if self.strides == defaults {
            return true;
        }
        if self.ndim() == 1 { return false; }
        let order = self.strides._fastest_varying_stride_order();
        let strides = self.strides.slice();

        // FIXME: Negative strides
        let dim = self.dim.slice();
        let mut cstride = 1;
        for &i in order.slice() {
            // a dimension of length 1 can have unequal strides
            if dim[i] != 1 && strides[i] != cstride {
                return false;
            }
            cstride *= dim[i];
        }
        true
    }

    /// Return a pointer to the first element in the array.
    ///
    /// Raw access to array elements needs to follow the strided indexing
    /// scheme: an element at multi-index *I* in an array with strides *S* is
    /// located at offset
    ///
    /// *Σ<sub>0 ≤ k < d</sub> I<sub>k</sub> × S<sub>k</sub>*
    ///
    /// where *d* is `self.ndim()`.
    #[inline(always)]
    pub fn as_ptr(&self) -> *const A {
        self.ptr
    }

    /// Return a mutable pointer to the first element in the array.
    #[inline(always)]
    pub fn as_mut_ptr(&mut self) -> *mut A
        where S: DataMut
    {
        self.ensure_unique(); // for RcArray
        self.ptr
    }

    /// Return the array’s data as a slice, if it is contiguous and in standard order.
    /// Return `None` otherwise.
    ///
    /// If this function returns `Some(_)`, then the element order in the slice
    /// corresponds to the logical order of the array’s elements.
    pub fn as_slice(&self) -> Option<&[A]> {
        if self.is_standard_layout() {
            unsafe {
                Some(slice::from_raw_parts(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Return the array’s data as a slice, if it is contiguous and in standard order.
    /// Return `None` otherwise.
    pub fn as_slice_mut(&mut self) -> Option<&mut [A]>
        where S: DataMut
    {
        if self.is_standard_layout() {
            self.ensure_unique();
            unsafe {
                Some(slice::from_raw_parts_mut(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Return the array’s data as a slice if it is contiguous,
    /// return `None` otherwise.
    ///
    /// If this function returns `Some(_)`, then the elements in the slice
    /// have whatever order the elements have in memory.
    ///
    /// Implementation notes: Does not yet support negatively strided arrays.
    pub fn as_slice_memory_order(&self) -> Option<&[A]> {
        if self.is_contiguous() {
            unsafe {
                Some(slice::from_raw_parts(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Return the array’s data as a slice if it is contiguous,
    /// return `None` otherwise.
    pub fn as_slice_memory_order_mut(&mut self) -> Option<&mut [A]>
        where S: DataMut
    {
        if self.is_contiguous() {
            self.ensure_unique();
            unsafe {
                Some(slice::from_raw_parts_mut(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Transform the array into `shape`; any shape with the same number of
    /// elements is accepted.
    ///
    /// May clone all elements if needed to arrange elements in standard
    /// layout (and break sharing).
    ///
    /// **Panics** if shapes are incompatible.
    ///
    /// ```
    /// use ndarray::{rcarr1, rcarr2};
    ///
    /// assert!(
    ///     rcarr1(&[1., 2., 3., 4.]).reshape((2, 2))
    ///     == rcarr2(&[[1., 2.],
    ///                 [3., 4.]])
    /// );
    /// ```
    pub fn reshape<E>(&self, shape: E) -> ArrayBase<S, E>
        where S: DataShared + DataOwned,
              A: Clone,
              E: Dimension,
    {
        if shape.size_checked() != Some(self.dim.size()) {
            panic!("ndarray: incompatible shapes in reshape, attempted from: {:?}, to: {:?}",
                   self.dim.slice(),
                   shape.slice())
        }
        // Check if contiguous, if not => copy all, else just adapt strides
        if self.is_standard_layout() {
            let cl = self.clone();
            ArrayBase {
                data: cl.data,
                ptr: cl.ptr,
                strides: shape.default_strides(),
                dim: shape,
            }
        } else {
            let v = self.iter().map(|x| x.clone()).collect::<Vec<A>>();
            unsafe {
                ArrayBase::from_shape_vec_unchecked(shape, v)
            }
        }
    }

    /// Transform the array into `shape`; any shape with the same number of
    /// elements is accepted, but the source array or view must be
    /// contiguous, otherwise we cannot rearrange the dimension.
    ///
    /// **Errors** if the shapes don't have the same number of elements.<br>
    /// **Errors** if the input array is not c- or f-contiguous.
    ///
    /// ```
    /// use ndarray::{aview1, aview2};
    ///
    /// assert!(
    ///     aview1(&[1., 2., 3., 4.]).into_shape((2, 2)).unwrap()
    ///     == aview2(&[[1., 2.],
    ///                 [3., 4.]])
    /// );
    /// ```
    pub fn into_shape<E>(self, shape: E) -> Result<ArrayBase<S, E>, ShapeError>
        where E: Dimension
    {
        if shape.size_checked() != Some(self.dim.size()) {
            return Err(error::incompatible_shapes(&self.dim, &shape));
        }
        // Check if contiguous, if not => copy all, else just adapt strides
        if self.is_standard_layout() {
            Ok(ArrayBase {
                data: self.data,
                ptr: self.ptr,
                strides: shape.default_strides(),
                dim: shape,
            })
        } else if self.ndim() > 1 && self.view().reversed_axes().is_standard_layout() {
            Ok(ArrayBase {
                data: self.data,
                ptr: self.ptr,
                strides: shape.fortran_strides(),
                dim: shape,
            })
        } else {
            Err(error::from_kind(error::ErrorKind::IncompatibleLayout))
        }
    }

    /// Act like a larger size and/or shape array by *broadcasting*
    /// into a larger shape, if possible.
    ///
    /// Return `None` if shapes can not be broadcast together.
    ///
    /// ***Background***
    ///
    ///  * Two axes are compatible if they are equal, or one of them is 1.
    ///  * In this instance, only the axes of the smaller side (self) can be 1.
    ///
    /// Compare axes beginning with the *last* axis of each shape.
    ///
    /// For example (1, 2, 4) can be broadcast into (7, 6, 2, 4)
    /// because its axes are either equal or 1 (or missing);
    /// while (2, 2) can *not* be broadcast into (2, 4).
    ///
    /// The implementation creates a view with strides set to zero for the
    /// axes that are to be repeated.
    ///
    /// The broadcasting documentation for Numpy has more information.
    ///
    /// ```
    /// use ndarray::{aview1, aview2};
    ///
    /// assert!(
    ///     aview1(&[1., 0.]).broadcast((10, 2)).unwrap()
    ///     == aview2(&[[1., 0.]; 10])
    /// );
    /// ```
    pub fn broadcast<E>(&self, dim: E) -> Option<ArrayView<A, E>>
        where E: Dimension
    {
        /// Return new stride when trying to grow `from` into shape `to`
        ///
        /// Broadcasting works by returning a "fake stride" where elements
        /// to repeat are in axes with 0 stride, so that several indexes point
        /// to the same element.
        ///
        /// **Note:** Cannot be used for mutable iterators, since repeating
        /// elements would create aliasing pointers.
        fn upcast<D: Dimension, E: Dimension>(to: &D, from: &E, stride: &E) -> Option<D> {
            let mut new_stride = to.clone();
            // begin at the back (the least significant dimension)
            // size of the axis has to either agree or `from` has to be 1
            if to.ndim() < from.ndim() {
                return None;
            }

            {
                let mut new_stride_iter = new_stride.slice_mut().iter_mut().rev();
                for ((er, es), dr) in from.slice().iter().rev()
                                        .zip(stride.slice().iter().rev())
                                        .zip(new_stride_iter.by_ref())
                {
                    /* update strides */
                    if *dr == *er {
                        /* keep stride */
                        *dr = *es;
                    } else if *er == 1 {
                        /* dead dimension, zero stride */
                        *dr = 0
                    } else {
                        return None;
                    }
                }

                /* set remaining strides to zero */
                for dr in new_stride_iter {
                    *dr = 0;
                }
            }
            Some(new_stride)
        }

        // Note: zero strides are safe precisely because we return an read-only view
        let broadcast_strides = match upcast(&dim, &self.dim, &self.strides) {
            Some(st) => st,
            None => return None,
        };
        unsafe { Some(ArrayView::new_(self.ptr, dim, broadcast_strides)) }
    }

    /// Swap axes `ax` and `bx`.
    ///
    /// This does not move any data, it just adjusts the array’s dimensions
    /// and strides.
    ///
    /// **Panics** if the axes are out of bounds.
    ///
    /// ***Compatibility notice:*** This function will use `Axis` arguments
    /// in the next version.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let mut a = arr2(&[[1., 2., 3.]]);
    /// a.swap_axes(0, 1);
    /// assert!(
    ///     a == arr2(&[[1.], [2.], [3.]])
    /// );
    /// ```
    pub fn swap_axes(&mut self, ax: usize, bx: usize) {
        self.dim.slice_mut().swap(ax, bx);
        self.strides.slice_mut().swap(ax, bx);
    }

    /// Transpose the array by reversing axes.
    ///
    /// Transposition reverses the order of the axes (dimensions and strides)
    /// while retaining the same data.
    pub fn reversed_axes(mut self) -> ArrayBase<S, D> {
        self.dim.slice_mut().reverse();
        self.strides.slice_mut().reverse();
        self
    }

    /// Return a transposed view of the array.
    ///
    /// This is a shorthand for `self.view().reversed_axes()`.
    ///
    /// See also the more general methods `.reversed_axes()` and `.swap_axes()`.
    pub fn t(&self) -> ArrayView<A, D> {
        self.view().reversed_axes()
    }

    fn pointer_is_inbounds(&self) -> bool {
        let slc = self.data._data_slice();
        if slc.is_empty() {
            // special case for data-less views
            return true;
        }
        let ptr = slc.as_ptr() as *mut _;
        let end =  unsafe {
            ptr.offset(slc.len() as isize)
        };
        self.ptr >= ptr && self.ptr <= end
    }

    /// Perform an elementwise assigment to `self` from `rhs`.
    ///
    /// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
    ///
    /// **Panics** if broadcasting isn’t possible.
    pub fn assign<E: Dimension, S2>(&mut self, rhs: &ArrayBase<S2, E>)
        where S: DataMut,
              A: Clone,
              S2: Data<Elem=A>,
    {
        self.zip_mut_with(rhs, |x, y| *x = y.clone());
    }

    /// Perform an elementwise assigment to `self` from scalar `x`.
    pub fn assign_scalar(&mut self, x: &A)
        where S: DataMut, A: Clone,
    {
        self.unordered_foreach_mut(move |elt| *elt = x.clone());
    }

    fn zip_mut_with_same_shape<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, mut f: F)
        where S: DataMut,
              S2: Data<Elem=B>,
              E: Dimension,
              F: FnMut(&mut A, &B)
    {
        debug_assert_eq!(self.shape(), rhs.shape());
        if let Some(self_s) = self.as_slice_mut() {
            if let Some(rhs_s) = rhs.as_slice() {
                let len = cmp::min(self_s.len(), rhs_s.len());
                let s = &mut self_s[..len];
                let r = &rhs_s[..len];
                for i in 0..len {
                    f(&mut s[i], &r[i]);
                }
                return;
            }
        }
        // otherwise, fall back to the outer iter
        self.zip_mut_with_by_rows(rhs, f);
    }

    // zip two arrays where they have different layout or strides
    #[inline(always)]
    fn zip_mut_with_by_rows<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, mut f: F)
        where S: DataMut,
              S2: Data<Elem=B>,
              E: Dimension,
              F: FnMut(&mut A, &B)
    {
        debug_assert_eq!(self.shape(), rhs.shape());

        // The one dimensional case is simple; we know they are not contig
        if self.ndim() == 1 {
            unsafe {
                for i in 0..self.len() {
                    f(self.uget_mut_1d(i), rhs.uget_1d(i));
                }
            }
            return;
        }
        // otherwise, break the arrays up into their inner rows
        let mut try_slices = true;
        let mut rows = self.inner_iter_mut().zip(rhs.inner_iter());
        for (mut s_row, r_row) in &mut rows {
            if try_slices {
                if let Some(self_s) = s_row.as_slice_mut() {
                    if let Some(rhs_s) = r_row.as_slice() {
                        let len = cmp::min(self_s.len(), rhs_s.len());
                        let s = &mut self_s[..len];
                        let r = &rhs_s[..len];
                        for i in 0..len {
                            f(&mut s[i], &r[i]);
                        }
                        continue;
                    }
                }
                try_slices = false;
            }
            unsafe {
                for i in 0..s_row.len() {
                    f(s_row.uget_mut(i), r_row.uget(i))
                }
            }
        }
    }

    fn zip_mut_with_elem<B, F>(&mut self, rhs_elem: &B, mut f: F)
        where S: DataMut,
              F: FnMut(&mut A, &B)
    {
        self.unordered_foreach_mut(move |elt| f(elt, rhs_elem));
    }

    /// Traverse two arrays in unspecified order, in lock step,
    /// calling the closure `f` on each element pair.
    ///
    /// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
    ///
    /// **Panics** if broadcasting isn’t possible.
    #[inline]
    pub fn zip_mut_with<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, f: F)
        where S: DataMut,
              S2: Data<Elem=B>,
              E: Dimension,
              F: FnMut(&mut A, &B)
    {
        if rhs.dim.ndim() == 0 {
            // Skip broadcast from 0-dim array
            self.zip_mut_with_elem(rhs.get_0d(), f);
        } else if self.dim.ndim() == rhs.dim.ndim() && self.shape() == rhs.shape() {
            self.zip_mut_with_same_shape(rhs, f);
        } else {
            let rhs_broadcast = rhs.broadcast_unwrap(self.dim());
            self.zip_mut_with_by_rows(&rhs_broadcast, f);
        }
    }

    /// Traverse the array elements and apply a fold,
    /// returning the resulting value.
    ///
    /// Elements are visited in arbitrary order.
    pub fn fold<'a, F, B>(&'a self, mut init: B, mut f: F) -> B
        where F: FnMut(B, &'a A) -> B, A: 'a
    {
        if let Some(slc) = self.as_slice_memory_order() {
            // FIXME: Use for loop when slice iterator is perf is restored
            for i in 0..slc.len() {
                init = f(init, &slc[i]);
            }
            return init;
        }
        for row in self.inner_iter() {
            for elt in row {
                init = f(init, elt);
            }
        }
        init
    }

    /// Call `f` by reference on each element and create a new array
    /// with the new values.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// Return an array with the same shape as `self`.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[ 0., 1.],
    ///                [-1., 2.]]);
    /// assert!(
    ///     a.map(|x| *x >= 1.0)
    ///     == arr2(&[[false, true],
    ///               [false, true]])
    /// );
    /// ```
    pub fn map<'a, B, F>(&'a self, f: F) -> OwnedArray<B, D>
        where F: FnMut(&'a A) -> B,
              A: 'a,
    {
        if let Some(slc) = self.as_slice_memory_order() {
            let v = ::iterators::to_vec(slc.iter().map(f));
            unsafe {
                ArrayBase::from_shape_vec_unchecked(
                    self.dim.clone().strides(self.strides.clone()), v)
            }
        } else {
            let v = ::iterators::to_vec(self.iter().map(f));
            unsafe {
                ArrayBase::from_shape_vec_unchecked(self.dim.clone(), v)
            }
        }
    }

    /// Call `f` by **v**alue on each element and create a new array
    /// with the new values.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// Return an array with the same shape as `self`.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[ 0., 1.],
    ///                [-1., 2.]]);
    /// assert!(
    ///     a.mapv(f32::abs) == arr2(&[[0., 1.],
    ///                                [1., 2.]])
    /// );
    /// ```
    pub fn mapv<B, F>(&self, f: F) -> OwnedArray<B, D>
        where F: Fn(A) -> B,
              A: Clone,
    {
        self.map(move |x| f(x.clone()))
    }

    /// Call `f` by **v**alue on each element, update the array with the new values
    /// and return it.
    ///
    /// Elements are visited in arbitrary order.
    pub fn mapv_into<F>(mut self, f: F) -> Self
        where S: DataMut,
              F: Fn(A) -> A,
              A: Clone,
    {
        self.mapv_inplace(f);
        self
    }

    /// Modify the array in place by calling `f` by mutable reference on each element.
    ///
    /// Elements are visited in arbitrary order.
    pub fn map_inplace<F>(&mut self, f: F)
        where S: DataMut,
              F: Fn(&mut A),
    {
        self.unordered_foreach_mut(f);
    }

    /// Modify the array in place by calling `f` by **v**alue on each element.
    /// The array is updated with the new values.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let mut a = arr2(&[[ 0., 1.],
    ///                    [-1., 2.]]);
    /// a.mapv_inplace(f32::exp);
    /// assert!(
    ///     a.all_close(&arr2(&[[1.00000, 2.71828],
    ///                         [0.36788, 7.38906]]), 1e-5)
    /// );
    /// ```
    pub fn mapv_inplace<F>(&mut self, f: F)
        where S: DataMut,
              F: Fn(A) -> A,
              A: Clone,
    {
        self.unordered_foreach_mut(move |x| *x = f(x.clone()));
    }

    /// Visit each element in the array by calling `f` by reference
    /// on each element.
    ///
    /// Elements are visited in arbitrary order.
    pub fn visit<'a, F>(&'a self, mut f: F)
        where F: FnMut(&'a A),
              A: 'a,
    {
        if let Some(slc) = self.as_slice_memory_order() {
            // FIXME: Use for loop when slice iterator is perf is restored
            for i in 0..slc.len() {
                f(&slc[i]);
            }
        } else {
            for row in self.inner_iter() {
                if let Some(slc) = row.into_slice() {
                    for i in 0..slc.len() {
                        f(&slc[i]);
                    }
                } else {
                    for elt in row {
                        f(elt);
                    }
                }
            }
        }
    }

    /// Fold along an axis.
    ///
    /// Combine the elements of each subview with the previous using the `fold`
    /// function and initial value `init`.
    ///
    /// Return the result as an `OwnedArray`.
    pub fn fold_axis<B, F>(&self, axis: Axis, init: B, mut fold: F)
        -> OwnedArray<B, D::Smaller>
        where D: RemoveAxis,
              F: FnMut(&B, &A) -> B,
              B: Clone,
    {
        let mut res = OwnedArray::from_elem(self.dim().remove_axis(axis), init);
        for subview in self.axis_iter(axis) {
            res.zip_mut_with(&subview, |x, y| *x = fold(x, y));
        }
        res
    }
}