use ndarray::*;
use super::convert::*;
use super::error::*;
use super::layout::*;
use super::types::*;
pub use lapack_traits::{Pivot, Transpose};
pub trait Solve<A: Scalar> {
fn solve<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>> {
let mut b = replicate(b);
self.solve_inplace(&mut b)?;
Ok(b)
}
fn solve_into<S: DataMut<Elem = A>>(&self, mut b: ArrayBase<S, Ix1>) -> Result<ArrayBase<S, Ix1>> {
self.solve_inplace(&mut b)?;
Ok(b)
}
fn solve_inplace<'a, S: DataMut<Elem = A>>(&self, &'a mut ArrayBase<S, Ix1>) -> Result<&'a mut ArrayBase<S, Ix1>>;
fn solve_t<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>> {
let mut b = replicate(b);
self.solve_t_inplace(&mut b)?;
Ok(b)
}
fn solve_t_into<S: DataMut<Elem = A>>(&self, mut b: ArrayBase<S, Ix1>) -> Result<ArrayBase<S, Ix1>> {
self.solve_t_inplace(&mut b)?;
Ok(b)
}
fn solve_t_inplace<'a, S: DataMut<Elem = A>>(&self, &'a mut ArrayBase<S, Ix1>)
-> Result<&'a mut ArrayBase<S, Ix1>>;
fn solve_h<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>> {
let mut b = replicate(b);
self.solve_h_inplace(&mut b)?;
Ok(b)
}
fn solve_h_into<S: DataMut<Elem = A>>(&self, mut b: ArrayBase<S, Ix1>) -> Result<ArrayBase<S, Ix1>> {
self.solve_h_inplace(&mut b)?;
Ok(b)
}
fn solve_h_inplace<'a, S: DataMut<Elem = A>>(&self, &'a mut ArrayBase<S, Ix1>)
-> Result<&'a mut ArrayBase<S, Ix1>>;
}
pub struct LUFactorized<S: Data> {
pub a: ArrayBase<S, Ix2>,
pub ipiv: Pivot,
}
impl<A, S> Solve<A> for LUFactorized<S>
where
A: Scalar,
S: Data<Elem = A>,
{
fn solve_inplace<'a, Sb>(&self, mut rhs: &'a mut ArrayBase<Sb, Ix1>) -> Result<&'a mut ArrayBase<Sb, Ix1>>
where
Sb: DataMut<Elem = A>,
{
unsafe {
A::solve(
self.a.square_layout()?,
Transpose::No,
self.a.as_allocated()?,
&self.ipiv,
rhs.as_slice_mut().unwrap(),
)?
};
Ok(rhs)
}
fn solve_t_inplace<'a, Sb>(&self, mut rhs: &'a mut ArrayBase<Sb, Ix1>) -> Result<&'a mut ArrayBase<Sb, Ix1>>
where
Sb: DataMut<Elem = A>,
{
unsafe {
A::solve(
self.a.square_layout()?,
Transpose::Transpose,
self.a.as_allocated()?,
&self.ipiv,
rhs.as_slice_mut().unwrap(),
)?
};
Ok(rhs)
}
fn solve_h_inplace<'a, Sb>(&self, mut rhs: &'a mut ArrayBase<Sb, Ix1>) -> Result<&'a mut ArrayBase<Sb, Ix1>>
where
Sb: DataMut<Elem = A>,
{
unsafe {
A::solve(
self.a.square_layout()?,
Transpose::Hermite,
self.a.as_allocated()?,
&self.ipiv,
rhs.as_slice_mut().unwrap(),
)?
};
Ok(rhs)
}
}
impl<A, S> Solve<A> for ArrayBase<S, Ix2>
where
A: Scalar,
S: Data<Elem = A>,
{
fn solve_inplace<'a, Sb>(&self, mut rhs: &'a mut ArrayBase<Sb, Ix1>) -> Result<&'a mut ArrayBase<Sb, Ix1>>
where
Sb: DataMut<Elem = A>,
{
let f = self.factorize()?;
f.solve_inplace(rhs)
}
fn solve_t_inplace<'a, Sb>(&self, mut rhs: &'a mut ArrayBase<Sb, Ix1>) -> Result<&'a mut ArrayBase<Sb, Ix1>>
where
Sb: DataMut<Elem = A>,
{
let f = self.factorize()?;
f.solve_t_inplace(rhs)
}
fn solve_h_inplace<'a, Sb>(&self, mut rhs: &'a mut ArrayBase<Sb, Ix1>) -> Result<&'a mut ArrayBase<Sb, Ix1>>
where
Sb: DataMut<Elem = A>,
{
let f = self.factorize()?;
f.solve_h_inplace(rhs)
}
}
pub trait Factorize<S: Data> {
fn factorize(&self) -> Result<LUFactorized<S>>;
}
pub trait FactorizeInto<S: Data> {
fn factorize_into(self) -> Result<LUFactorized<S>>;
}
impl<A, S> FactorizeInto<S> for ArrayBase<S, Ix2>
where
A: Scalar,
S: DataMut<Elem = A>,
{
fn factorize_into(mut self) -> Result<LUFactorized<S>> {
let ipiv = unsafe { A::lu(self.layout()?, self.as_allocated_mut()?)? };
Ok(LUFactorized {
a: self,
ipiv: ipiv,
})
}
}
impl<A, Si> Factorize<OwnedRepr<A>> for ArrayBase<Si, Ix2>
where
A: Scalar,
Si: Data<Elem = A>,
{
fn factorize(&self) -> Result<LUFactorized<OwnedRepr<A>>> {
let mut a: Array2<A> = replicate(self);
let ipiv = unsafe { A::lu(a.layout()?, a.as_allocated_mut()?)? };
Ok(LUFactorized { a: a, ipiv: ipiv })
}
}
pub trait Inverse {
type Output;
fn inv(&self) -> Result<Self::Output>;
}
pub trait InverseInto {
type Output;
fn inv_into(self) -> Result<Self::Output>;
}
impl<A, S> InverseInto for LUFactorized<S>
where
A: Scalar,
S: DataMut<Elem = A>,
{
type Output = ArrayBase<S, Ix2>;
fn inv_into(mut self) -> Result<ArrayBase<S, Ix2>> {
unsafe {
A::inv(
self.a.square_layout()?,
self.a.as_allocated_mut()?,
&self.ipiv,
)?
};
Ok(self.a)
}
}
impl<A, S> Inverse for LUFactorized<S>
where
A: Scalar,
S: Data<Elem = A>,
{
type Output = Array2<A>;
fn inv(&self) -> Result<Array2<A>> {
let f = LUFactorized {
a: replicate(&self.a),
ipiv: self.ipiv.clone(),
};
f.inv_into()
}
}
impl<A, S> InverseInto for ArrayBase<S, Ix2>
where
A: Scalar,
S: DataMut<Elem = A>,
{
type Output = Self;
fn inv_into(self) -> Result<Self::Output> {
let f = self.factorize_into()?;
f.inv_into()
}
}
impl<A, Si> Inverse for ArrayBase<Si, Ix2>
where
A: Scalar,
Si: Data<Elem = A>,
{
type Output = Array2<A>;
fn inv(&self) -> Result<Self::Output> {
let f = self.factorize()?;
f.inv_into()
}
}
pub trait Determinant<A: Scalar> {
fn det(&self) -> Result<A>;
}
pub trait DeterminantInto<A: Scalar> {
fn det_into(self) -> Result<A>;
}
fn lu_det<'a, A, P, U>(ipiv_iter: P, u_diag_iter: U) -> A
where
A: Scalar,
P: Iterator<Item = i32>,
U: Iterator<Item = &'a A>,
{
let pivot_sign = if ipiv_iter
.enumerate()
.filter(|&(i, pivot)| pivot != i as i32 + 1)
.count() % 2 == 0
{
A::one()
} else {
-A::one()
};
let (upper_sign, ln_det) = u_diag_iter.fold((A::one(), A::zero()), |(upper_sign, ln_det), &elem| {
let abs_elem = elem.abs();
(
upper_sign * elem.div_real(abs_elem),
ln_det.add_real(abs_elem.ln()),
)
});
pivot_sign * upper_sign * ln_det.exp()
}
impl<A, S> Determinant<A> for LUFactorized<S>
where
A: Scalar,
S: Data<Elem = A>,
{
fn det(&self) -> Result<A> {
self.a.ensure_square()?;
Ok(lu_det(self.ipiv.iter().cloned(), self.a.diag().iter()))
}
}
impl<A, S> DeterminantInto<A> for LUFactorized<S>
where
A: Scalar,
S: Data<Elem = A>,
{
fn det_into(self) -> Result<A> {
self.a.ensure_square()?;
Ok(lu_det(self.ipiv.into_iter(), self.a.into_diag().iter()))
}
}
impl<A, S> Determinant<A> for ArrayBase<S, Ix2>
where
A: Scalar,
S: Data<Elem = A>,
{
fn det(&self) -> Result<A> {
self.ensure_square()?;
match self.factorize() {
Ok(fac) => fac.det(),
Err(LinalgError::Lapack(LapackError { return_code })) if return_code > 0 => Ok(A::zero()),
Err(err) => Err(err),
}
}
}
impl<A, S> DeterminantInto<A> for ArrayBase<S, Ix2>
where
A: Scalar,
S: DataMut<Elem = A>,
{
fn det_into(self) -> Result<A> {
self.ensure_square()?;
match self.factorize_into() {
Ok(fac) => fac.det_into(),
Err(LinalgError::Lapack(LapackError { return_code })) if return_code > 0 => Ok(A::zero()),
Err(err) => Err(err),
}
}
}