[−][src]Trait ndarray_linalg::solve::Solve
An interface for solving systems of linear equations.
There are three groups of methods:
solve*(normal) methods solveA * x = bforx.solve_t*(transpose) methods solveA^T * x = bforx.solve_h*(Hermitian conjugate) methods solveA^H * x = bforx.
Within each group, there are three methods that handle ownership differently:
*methods take a reference toband returnxas a new array.*_intomethods take ownership ofb, store the result in it, and return it.*_inplacemethods take a mutable reference toband store the result in that array.
If you plan to solve many equations with the same A matrix but different
b vectors, it's faster to factor the A matrix once using the
Factorize trait, and then solve using the LUFactorized struct.
Required methods
fn solve_inplace<'a, S: DataMut<Elem = A>>(
&self,
b: &'a mut ArrayBase<S, Ix1>
) -> Result<&'a mut ArrayBase<S, Ix1>>
&self,
b: &'a mut ArrayBase<S, Ix1>
) -> Result<&'a mut ArrayBase<S, Ix1>>
Solves a system of linear equations A * x = b where A is self, b
is the argument, and x is the successful result.
fn solve_t_inplace<'a, S: DataMut<Elem = A>>(
&self,
b: &'a mut ArrayBase<S, Ix1>
) -> Result<&'a mut ArrayBase<S, Ix1>>
&self,
b: &'a mut ArrayBase<S, Ix1>
) -> Result<&'a mut ArrayBase<S, Ix1>>
Solves a system of linear equations A^T * x = b where A is self, b
is the argument, and x is the successful result.
fn solve_h_inplace<'a, S: DataMut<Elem = A>>(
&self,
b: &'a mut ArrayBase<S, Ix1>
) -> Result<&'a mut ArrayBase<S, Ix1>>
&self,
b: &'a mut ArrayBase<S, Ix1>
) -> Result<&'a mut ArrayBase<S, Ix1>>
Solves a system of linear equations A^H * x = b where A is self, b
is the argument, and x is the successful result.
Provided methods
fn solve<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>>
Solves a system of linear equations A * x = b where A is self, b
is the argument, and x is the successful result.
fn solve_into<S: DataMut<Elem = A>>(
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
Solves a system of linear equations A * x = b where A is self, b
is the argument, and x is the successful result.
fn solve_t<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>>
Solves a system of linear equations A^T * x = b where A is self, b
is the argument, and x is the successful result.
fn solve_t_into<S: DataMut<Elem = A>>(
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
Solves a system of linear equations A^T * x = b where A is self, b
is the argument, and x is the successful result.
fn solve_h<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>>
Solves a system of linear equations A^H * x = b where A is self, b
is the argument, and x is the successful result.
fn solve_h_into<S: DataMut<Elem = A>>(
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
Solves a system of linear equations A^H * x = b where A is self, b
is the argument, and x is the successful result.
Implementations on Foreign Types
impl<A, S> Solve<A> for ArrayBase<S, Ix2> where
A: Scalar + Lapack,
S: Data<Elem = A>, [src]
A: Scalar + Lapack,
S: Data<Elem = A>,
fn solve_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>, [src]
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>,
fn solve_t_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>, [src]
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>,
fn solve_h_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>, [src]
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>,
fn solve<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>>[src]
fn solve_into<S: DataMut<Elem = A>>(
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>[src]
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
fn solve_t<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>>[src]
fn solve_t_into<S: DataMut<Elem = A>>(
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>[src]
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
fn solve_h<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>>[src]
fn solve_h_into<S: DataMut<Elem = A>>(
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>[src]
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
Implementors
impl<A, S> Solve<A> for LUFactorized<S> where
A: Scalar + Lapack,
S: Data<Elem = A>, [src]
A: Scalar + Lapack,
S: Data<Elem = A>,
fn solve_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>, [src]
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>,
fn solve_t_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>, [src]
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>,
fn solve_h_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>, [src]
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>
) -> Result<&'a mut ArrayBase<Sb, Ix1>> where
Sb: DataMut<Elem = A>,
fn solve<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>>[src]
fn solve_into<S: DataMut<Elem = A>>(
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>[src]
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
fn solve_t<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>>[src]
fn solve_t_into<S: DataMut<Elem = A>>(
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>[src]
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>
fn solve_h<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>>[src]
fn solve_h_into<S: DataMut<Elem = A>>(
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>[src]
&self,
b: ArrayBase<S, Ix1>
) -> Result<ArrayBase<S, Ix1>>