1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use crate::{num::Float, Array1, Array2};
use ndarray::ArrayViewMut1;
pub trait IrlsReg<F>
where
F: Float,
{
fn likelihood(&self, l: F, regressors: &Array1<F>) -> F;
fn gradient(&self, l: Array1<F>, regressors: &Array1<F>) -> Array1<F>;
fn irls_vec(&self, vec: Array1<F>, regressors: &Array1<F>) -> Array1<F>;
fn irls_mat(&self, mat: Array2<F>, regressors: &Array1<F>) -> Array2<F>;
fn is_null(&self) -> bool;
}
pub struct Null {}
impl<F: Float> IrlsReg<F> for Null {
#[inline]
fn likelihood(&self, l: F, _: &Array1<F>) -> F {
l
}
#[inline]
fn gradient(&self, jac: Array1<F>, _: &Array1<F>) -> Array1<F> {
jac
}
#[inline]
fn irls_vec(&self, vec: Array1<F>, _: &Array1<F>) -> Array1<F> {
vec
}
#[inline]
fn irls_mat(&self, mat: Array2<F>, _: &Array1<F>) -> Array2<F> {
mat
}
fn is_null(&self) -> bool {
true
}
}
pub struct Ridge<F: Float> {
l2_vec: Array1<F>,
}
impl<F: Float> Ridge<F> {
pub fn from_diag(l2: Array1<F>) -> Self {
Self { l2_vec: l2 }
}
}
impl<F: Float> IrlsReg<F> for Ridge<F> {
fn likelihood(&self, l: F, beta: &Array1<F>) -> F {
l - F::from(0.5).unwrap() * (&self.l2_vec * &beta.mapv(|b| b * b)).sum()
}
fn gradient(&self, jac: Array1<F>, beta: &Array1<F>) -> Array1<F> {
jac - (&self.l2_vec * beta)
}
#[inline]
fn irls_vec(&self, vec: Array1<F>, _: &Array1<F>) -> Array1<F> {
vec
}
fn irls_mat(&self, mut mat: Array2<F>, _: &Array1<F>) -> Array2<F> {
let mut mat_diag: ArrayViewMut1<F> = mat.diag_mut();
mat_diag += &self.l2_vec;
mat
}
fn is_null(&self) -> bool {
false
}
}
pub struct LassoSmooth<F: Float> {
l1_vec: Array1<F>,
s: F,
}
impl<F: Float> LassoSmooth<F> {
pub fn from_diag(l1: Array1<F>, s: F) -> Self {
Self { l1_vec: l1, s }
}
fn sech_sq(&self, beta: F) -> F {
let sech = (beta / self.s).cosh().recip();
sech * sech
}
}
impl<F: Float> IrlsReg<F> for LassoSmooth<F> {
fn likelihood(&self, l: F, beta: &Array1<F>) -> F {
l - (&self.l1_vec * &beta.mapv(|b| self.s * (b / self.s).cosh().ln())).sum()
}
fn gradient(&self, jac: Array1<F>, beta: &Array1<F>) -> Array1<F> {
jac - (&self.l1_vec * &beta.mapv(|b| (b / self.s).tanh()))
}
fn irls_vec(&self, vec: Array1<F>, beta: &Array1<F>) -> Array1<F> {
vec - &self.l1_vec * &beta.mapv(|b| (b / self.s).tanh() - (b / self.s) * self.sech_sq(b))
}
fn irls_mat(&self, mut mat: Array2<F>, beta: &Array1<F>) -> Array2<F> {
let mut mat_diag: ArrayViewMut1<F> = mat.diag_mut();
mat_diag += &(&self.l1_vec * &beta.mapv(|b| self.s.recip() * self.sech_sq(b)));
mat
}
fn is_null(&self) -> bool {
false
}
}
#[cfg(test)]
mod tests {
use super::*;
use ndarray::array;
#[test]
fn ridge_matrix() {
let l = 1e-4;
let ridge = Ridge::from_diag(array![0., l]);
let mat = array![[0.5, 0.1], [0.1, 0.2]];
let mut target_mat = mat.clone();
target_mat[[1, 1]] += l;
let dummy_beta = array![0., 0.];
assert_eq!(ridge.irls_mat(mat, &dummy_beta), target_mat);
}
}