nautilus_serialization/arrow/
mod.rs1pub mod bar;
19pub mod close;
20pub mod delta;
21pub mod depth;
22pub mod index_price;
23pub mod mark_price;
24pub mod quote;
25pub mod trade;
26
27use std::{
28 collections::HashMap,
29 io::{self, Write},
30};
31
32use arrow::{
33 array::{Array, ArrayRef},
34 datatypes::{DataType, Schema},
35 error::ArrowError,
36 ipc::writer::StreamWriter,
37 record_batch::RecordBatch,
38};
39use nautilus_model::{
40 data::{
41 Data, IndexPriceUpdate, MarkPriceUpdate, bar::Bar, close::InstrumentClose,
42 delta::OrderBookDelta, depth::OrderBookDepth10, quote::QuoteTick, trade::TradeTick,
43 },
44 types::{price::PriceRaw, quantity::QuantityRaw},
45};
46#[cfg(feature = "python")]
47use pyo3::prelude::*;
48
49const KEY_BAR_TYPE: &str = "bar_type";
51pub const KEY_INSTRUMENT_ID: &str = "instrument_id";
52const KEY_PRICE_PRECISION: &str = "price_precision";
53const KEY_SIZE_PRECISION: &str = "size_precision";
54
55#[derive(thiserror::Error, Debug)]
56pub enum DataStreamingError {
57 #[error("I/O error: {0}")]
58 IoError(#[from] io::Error),
59 #[error("Arrow error: {0}")]
60 ArrowError(#[from] arrow::error::ArrowError),
61 #[cfg(feature = "python")]
62 #[error("Python error: {0}")]
63 PythonError(#[from] PyErr),
64}
65
66#[derive(thiserror::Error, Debug)]
67pub enum EncodingError {
68 #[error("Empty data")]
69 EmptyData,
70 #[error("Missing metadata key: `{0}`")]
71 MissingMetadata(&'static str),
72 #[error("Missing data column: `{0}` at index {1}")]
73 MissingColumn(&'static str, usize),
74 #[error("Error parsing `{0}`: {1}")]
75 ParseError(&'static str, String),
76 #[error("Invalid column type `{0}` at index {1}: expected {2}, found {3}")]
77 InvalidColumnType(&'static str, usize, DataType, DataType),
78 #[error("Arrow error: {0}")]
79 ArrowError(#[from] arrow::error::ArrowError),
80}
81
82#[inline]
83fn get_raw_price(bytes: &[u8]) -> PriceRaw {
84 PriceRaw::from_le_bytes(bytes.try_into().unwrap())
85}
86
87#[inline]
88fn get_raw_quantity(bytes: &[u8]) -> QuantityRaw {
89 QuantityRaw::from_le_bytes(bytes.try_into().unwrap())
90}
91
92pub trait ArrowSchemaProvider {
93 fn get_schema(metadata: Option<HashMap<String, String>>) -> Schema;
94
95 #[must_use]
96 fn get_schema_map() -> HashMap<String, String> {
97 let schema = Self::get_schema(None);
98 let mut map = HashMap::new();
99 for field in schema.fields() {
100 let name = field.name().to_string();
101 let data_type = format!("{:?}", field.data_type());
102 map.insert(name, data_type);
103 }
104 map
105 }
106}
107
108pub trait EncodeToRecordBatch
109where
110 Self: Sized + ArrowSchemaProvider,
111{
112 fn encode_batch(
113 metadata: &HashMap<String, String>,
114 data: &[Self],
115 ) -> Result<RecordBatch, ArrowError>;
116
117 fn metadata(&self) -> HashMap<String, String>;
118 fn chunk_metadata(chunk: &[Self]) -> HashMap<String, String> {
119 chunk
120 .first()
121 .map(|elem| elem.metadata())
122 .expect("Chunk must have atleast one element to encode")
123 }
124}
125
126pub trait DecodeFromRecordBatch
127where
128 Self: Sized + Into<Data> + ArrowSchemaProvider,
129{
130 fn decode_batch(
131 metadata: &HashMap<String, String>,
132 record_batch: RecordBatch,
133 ) -> Result<Vec<Self>, EncodingError>;
134}
135
136pub trait DecodeDataFromRecordBatch
137where
138 Self: Sized + Into<Data> + ArrowSchemaProvider,
139{
140 fn decode_data_batch(
141 metadata: &HashMap<String, String>,
142 record_batch: RecordBatch,
143 ) -> Result<Vec<Data>, EncodingError>;
144}
145
146pub trait WriteStream {
147 fn write(&mut self, record_batch: &RecordBatch) -> Result<(), DataStreamingError>;
148}
149
150impl<T: EncodeToRecordBatch + Write> WriteStream for T {
151 fn write(&mut self, record_batch: &RecordBatch) -> Result<(), DataStreamingError> {
152 let mut writer = StreamWriter::try_new(self, &record_batch.schema())?;
153 writer.write(record_batch)?;
154 writer.finish()?;
155 Ok(())
156 }
157}
158
159pub fn extract_column<'a, T: Array + 'static>(
160 cols: &'a [ArrayRef],
161 column_key: &'static str,
162 column_index: usize,
163 expected_type: DataType,
164) -> Result<&'a T, EncodingError> {
165 let column_values = cols
166 .get(column_index)
167 .ok_or(EncodingError::MissingColumn(column_key, column_index))?;
168 let downcasted_values =
169 column_values
170 .as_any()
171 .downcast_ref::<T>()
172 .ok_or(EncodingError::InvalidColumnType(
173 column_key,
174 column_index,
175 expected_type,
176 column_values.data_type().clone(),
177 ))?;
178 Ok(downcasted_values)
179}
180
181pub fn book_deltas_to_arrow_record_batch_bytes(
182 data: Vec<OrderBookDelta>,
183) -> Result<RecordBatch, EncodingError> {
184 if data.is_empty() {
185 return Err(EncodingError::EmptyData);
186 }
187
188 let metadata = OrderBookDelta::chunk_metadata(&data);
190 OrderBookDelta::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
191}
192
193pub fn book_depth10_to_arrow_record_batch_bytes(
194 data: Vec<OrderBookDepth10>,
195) -> Result<RecordBatch, EncodingError> {
196 if data.is_empty() {
197 return Err(EncodingError::EmptyData);
198 }
199
200 let first = data.first().unwrap();
203 let metadata = first.metadata();
204 OrderBookDepth10::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
205}
206
207pub fn quotes_to_arrow_record_batch_bytes(
208 data: Vec<QuoteTick>,
209) -> Result<RecordBatch, EncodingError> {
210 if data.is_empty() {
211 return Err(EncodingError::EmptyData);
212 }
213
214 let first = data.first().unwrap();
217 let metadata = first.metadata();
218 QuoteTick::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
219}
220
221pub fn trades_to_arrow_record_batch_bytes(
222 data: Vec<TradeTick>,
223) -> Result<RecordBatch, EncodingError> {
224 if data.is_empty() {
225 return Err(EncodingError::EmptyData);
226 }
227
228 let first = data.first().unwrap();
231 let metadata = first.metadata();
232 TradeTick::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
233}
234
235pub fn bars_to_arrow_record_batch_bytes(data: Vec<Bar>) -> Result<RecordBatch, EncodingError> {
236 if data.is_empty() {
237 return Err(EncodingError::EmptyData);
238 }
239
240 let first = data.first().unwrap();
243 let metadata = first.metadata();
244 Bar::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
245}
246
247pub fn mark_prices_to_arrow_record_batch_bytes(
248 data: Vec<MarkPriceUpdate>,
249) -> Result<RecordBatch, EncodingError> {
250 if data.is_empty() {
251 return Err(EncodingError::EmptyData);
252 }
253
254 let first = data.first().unwrap();
257 let metadata = first.metadata();
258 MarkPriceUpdate::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
259}
260
261pub fn index_prices_to_arrow_record_batch_bytes(
262 data: Vec<IndexPriceUpdate>,
263) -> Result<RecordBatch, EncodingError> {
264 if data.is_empty() {
265 return Err(EncodingError::EmptyData);
266 }
267
268 let first = data.first().unwrap();
271 let metadata = first.metadata();
272 IndexPriceUpdate::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
273}
274
275pub fn instrument_closes_to_arrow_record_batch_bytes(
276 data: Vec<InstrumentClose>,
277) -> Result<RecordBatch, EncodingError> {
278 if data.is_empty() {
279 return Err(EncodingError::EmptyData);
280 }
281
282 let first = data.first().unwrap();
285 let metadata = first.metadata();
286 InstrumentClose::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
287}