1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
use std::iter;
use std::mem;
use crate::allocator::Allocator;
use crate::sparse::{CsMatrix, CsStorage, CsStorageIter, CsStorageIterMut, CsVecStorage};
use crate::{Const, DefaultAllocator, Dim, Matrix, OVector, RealField};
/// The cholesky decomposition of a column compressed sparse matrix.
pub struct CsCholesky<T: RealField, D: Dim>
where
DefaultAllocator: Allocator<usize, D> + Allocator<T, D>,
{
// Non-zero pattern of the original matrix upper-triangular part.
// Unlike the original matrix, the `original_p` array does contain the last sentinel value
// equal to `original_i.len()` at the end.
original_p: Vec<usize>,
original_i: Vec<usize>,
// Decomposition result.
l: CsMatrix<T, D, D>,
// Used only for the pattern.
// TODO: store only the nonzero pattern instead.
u: CsMatrix<T, D, D>,
ok: bool,
// Workspaces.
work_x: OVector<T, D>,
work_c: OVector<usize, D>,
}
impl<T: RealField, D: Dim> CsCholesky<T, D>
where
DefaultAllocator: Allocator<usize, D> + Allocator<T, D>,
{
/// Computes the cholesky decomposition of the sparse matrix `m`.
pub fn new(m: &CsMatrix<T, D, D>) -> Self {
let mut me = Self::new_symbolic(m);
let _ = me.decompose_left_looking(&m.data.vals);
me
}
/// Perform symbolic analysis for the given matrix.
///
/// This does not access the numerical values of `m`.
pub fn new_symbolic(m: &CsMatrix<T, D, D>) -> Self {
assert!(
m.is_square(),
"The matrix `m` must be square to compute its elimination tree."
);
let (l, u) = Self::nonzero_pattern(m);
// Workspaces.
let work_x = Matrix::zeros_generic(m.data.shape().0, Const::<1>);
let work_c = Matrix::zeros_generic(m.data.shape().1, Const::<1>);
let mut original_p = m.data.p.as_slice().to_vec();
original_p.push(m.data.i.len());
CsCholesky {
original_p,
original_i: m.data.i.clone(),
l,
u,
ok: false,
work_x,
work_c,
}
}
/// The lower-triangular matrix of the cholesky decomposition.
#[must_use]
pub fn l(&self) -> Option<&CsMatrix<T, D, D>> {
if self.ok {
Some(&self.l)
} else {
None
}
}
/// Extracts the lower-triangular matrix of the cholesky decomposition.
pub fn unwrap_l(self) -> Option<CsMatrix<T, D, D>> {
if self.ok {
Some(self.l)
} else {
None
}
}
/// Perform a numerical left-looking cholesky decomposition of a matrix with the same structure as the
/// one used to initialize `self`, but with different non-zero values provided by `values`.
pub fn decompose_left_looking(&mut self, values: &[T]) -> bool {
assert!(
values.len() >= self.original_i.len(),
"The set of values is too small."
);
let n = self.l.nrows();
// Reset `work_c` to the column pointers of `l`.
self.work_c.copy_from(&self.l.data.p);
unsafe {
for k in 0..n {
// Scatter the k-th column of the original matrix with the values provided.
let range_k =
*self.original_p.get_unchecked(k)..*self.original_p.get_unchecked(k + 1);
*self.work_x.vget_unchecked_mut(k) = T::zero();
for p in range_k.clone() {
let irow = *self.original_i.get_unchecked(p);
if irow >= k {
*self.work_x.vget_unchecked_mut(irow) = values.get_unchecked(p).clone();
}
}
for j in self.u.data.column_row_indices(k) {
let factor = -self
.l
.data
.vals
.get_unchecked(*self.work_c.vget_unchecked(j))
.clone();
*self.work_c.vget_unchecked_mut(j) += 1;
if j < k {
for (z, val) in self.l.data.column_entries(j) {
if z >= k {
*self.work_x.vget_unchecked_mut(z) += val * factor.clone();
}
}
}
}
let diag = self.work_x.vget_unchecked(k).clone();
if diag > T::zero() {
let denom = diag.sqrt();
*self
.l
.data
.vals
.get_unchecked_mut(*self.l.data.p.vget_unchecked(k)) = denom.clone();
for (p, val) in self.l.data.column_entries_mut(k) {
*val = self.work_x.vget_unchecked(p).clone() / denom.clone();
*self.work_x.vget_unchecked_mut(p) = T::zero();
}
} else {
self.ok = false;
return false;
}
}
}
self.ok = true;
true
}
/// Perform a numerical up-looking cholesky decomposition of a matrix with the same structure as the
/// one used to initialize `self`, but with different non-zero values provided by `values`.
pub fn decompose_up_looking(&mut self, values: &[T]) -> bool {
assert!(
values.len() >= self.original_i.len(),
"The set of values is too small."
);
// Reset `work_c` to the column pointers of `l`.
self.work_c.copy_from(&self.l.data.p);
// Perform the decomposition.
for k in 0..self.l.nrows() {
unsafe {
// Scatter the k-th column of the original matrix with the values provided.
let column_range =
*self.original_p.get_unchecked(k)..*self.original_p.get_unchecked(k + 1);
*self.work_x.vget_unchecked_mut(k) = T::zero();
for p in column_range.clone() {
let irow = *self.original_i.get_unchecked(p);
if irow <= k {
*self.work_x.vget_unchecked_mut(irow) = values.get_unchecked(p).clone();
}
}
let mut diag = self.work_x.vget_unchecked(k).clone();
*self.work_x.vget_unchecked_mut(k) = T::zero();
// Triangular solve.
for irow in self.u.data.column_row_indices(k) {
if irow >= k {
continue;
}
let lki = self.work_x.vget_unchecked(irow).clone()
/ self
.l
.data
.vals
.get_unchecked(*self.l.data.p.vget_unchecked(irow))
.clone();
*self.work_x.vget_unchecked_mut(irow) = T::zero();
for p in
*self.l.data.p.vget_unchecked(irow) + 1..*self.work_c.vget_unchecked(irow)
{
*self
.work_x
.vget_unchecked_mut(*self.l.data.i.get_unchecked(p)) -=
self.l.data.vals.get_unchecked(p).clone() * lki.clone();
}
diag -= lki.clone() * lki.clone();
let p = *self.work_c.vget_unchecked(irow);
*self.work_c.vget_unchecked_mut(irow) += 1;
*self.l.data.i.get_unchecked_mut(p) = k;
*self.l.data.vals.get_unchecked_mut(p) = lki;
}
if diag <= T::zero() {
self.ok = false;
return false;
}
// Deal with the diagonal element.
let p = *self.work_c.vget_unchecked(k);
*self.work_c.vget_unchecked_mut(k) += 1;
*self.l.data.i.get_unchecked_mut(p) = k;
*self.l.data.vals.get_unchecked_mut(p) = diag.sqrt();
}
}
self.ok = true;
true
}
fn elimination_tree<S: CsStorage<T, D, D>>(m: &CsMatrix<T, D, D, S>) -> Vec<usize> {
let nrows = m.nrows();
let mut forest: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
let mut ancestor: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
for k in 0..nrows {
for irow in m.data.column_row_indices(k) {
let mut i = irow;
while i < k {
let i_ancestor = ancestor[i];
ancestor[i] = k;
if i_ancestor == usize::max_value() {
forest[i] = k;
break;
}
i = i_ancestor;
}
}
}
forest
}
fn reach<S: CsStorage<T, D, D>>(
m: &CsMatrix<T, D, D, S>,
j: usize,
max_j: usize,
tree: &[usize],
marks: &mut Vec<bool>,
out: &mut Vec<usize>,
) {
marks.clear();
marks.resize(tree.len(), false);
// TODO: avoid all those allocations.
let mut tmp = Vec::new();
let mut res = Vec::new();
for irow in m.data.column_row_indices(j) {
let mut curr = irow;
while curr != usize::max_value() && curr <= max_j && !marks[curr] {
marks[curr] = true;
tmp.push(curr);
curr = tree[curr];
}
tmp.append(&mut res);
mem::swap(&mut tmp, &mut res);
}
out.append(&mut res);
}
fn nonzero_pattern<S: CsStorage<T, D, D>>(
m: &CsMatrix<T, D, D, S>,
) -> (CsMatrix<T, D, D>, CsMatrix<T, D, D>) {
let etree = Self::elimination_tree(m);
let (nrows, ncols) = m.data.shape();
let mut rows = Vec::with_capacity(m.len());
let mut cols = Matrix::zeros_generic(m.data.shape().0, Const::<1>);
let mut marks = Vec::new();
// NOTE: the following will actually compute the non-zero pattern of
// the transpose of l.
for i in 0..nrows.value() {
cols[i] = rows.len();
Self::reach(m, i, i, &etree, &mut marks, &mut rows);
}
let mut vals = Vec::with_capacity(rows.len());
unsafe {
vals.set_len(rows.len());
}
vals.shrink_to_fit();
let data = CsVecStorage {
shape: (nrows, ncols),
p: cols,
i: rows,
vals,
};
let u = CsMatrix::from_data(data);
// XXX: avoid this transpose.
let l = u.transpose();
(l, u)
}
/*
*
* NOTE: All the following methods are untested and currently unused.
*
*
fn column_counts<S: CsStorage<T, D, D>>(
m: &CsMatrix<T, D, D, S>,
tree: &[usize],
) -> Vec<usize> {
let len = m.data.shape().0.value();
let mut counts: Vec<_> = iter::repeat(0).take(len).collect();
let mut reach = Vec::new();
let mut marks = Vec::new();
for i in 0..len {
Self::reach(m, i, i, tree, &mut marks, &mut reach);
for j in reach.drain(..) {
counts[j] += 1;
}
}
counts
}
fn tree_postorder(tree: &[usize]) -> Vec<usize> {
// TODO: avoid all those allocations?
let mut first_child: Vec<_> = iter::repeat(usize::max_value()).take(tree.len()).collect();
let mut other_children: Vec<_> =
iter::repeat(usize::max_value()).take(tree.len()).collect();
// Build the children list from the parent list.
// The set of children of the node `i` is given by the linked list
// starting at `first_child[i]`. The nodes of this list are then:
// { first_child[i], other_children[first_child[i]], other_children[other_children[first_child[i]], ... }
for (i, parent) in tree.iter().enumerate() {
if *parent != usize::max_value() {
let brother = first_child[*parent];
first_child[*parent] = i;
other_children[i] = brother;
}
}
let mut stack = Vec::with_capacity(tree.len());
let mut postorder = Vec::with_capacity(tree.len());
for (i, node) in tree.iter().enumerate() {
if *node == usize::max_value() {
Self::dfs(
i,
&mut first_child,
&other_children,
&mut stack,
&mut postorder,
)
}
}
postorder
}
fn dfs(
i: usize,
first_child: &mut [usize],
other_children: &[usize],
stack: &mut Vec<usize>,
result: &mut Vec<usize>,
) {
stack.clear();
stack.push(i);
while let Some(n) = stack.pop() {
let child = first_child[n];
if child == usize::max_value() {
// No children left.
result.push(n);
} else {
stack.push(n);
stack.push(child);
first_child[n] = other_children[child];
}
}
}
*/
}