1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
use alga::general::{Real, SubsetOf, SupersetOf};
use alga::linear::Rotation;
use base::{DefaultAllocator, MatrixN};
use base::dimension::{DimMin, DimName, DimNameAdd, DimNameSum, U1};
use base::allocator::Allocator;
use geometry::{Isometry, Point, Similarity, SuperTCategoryOf, TAffine, Transform, Translation};
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Similarity<N1, D, R1>
where
    N1: Real + SubsetOf<N2>,
    N2: Real + SupersetOf<N1>,
    R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
    R2: Rotation<Point<N2, D>>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
    #[inline]
    fn to_superset(&self) -> Similarity<N2, D, R2> {
        Similarity::from_isometry(self.isometry.to_superset(), self.scaling().to_superset())
    }
    #[inline]
    fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool {
        ::is_convertible::<_, Isometry<N1, D, R1>>(&sim.isometry)
            && ::is_convertible::<_, N1>(&sim.scaling())
    }
    #[inline]
    unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
        Similarity::from_isometry(
            sim.isometry.to_subset_unchecked(),
            sim.scaling().to_subset_unchecked(),
        )
    }
}
impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Similarity<N1, D, R>
where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    C: SuperTCategoryOf<TAffine>,
    R: Rotation<Point<N1, D>>
        + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
        + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>, 
    DefaultAllocator: Allocator<N1, D>
        + Allocator<N1, D, D>
        + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<(usize, usize), D>
        + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<N2, D, D>
        + Allocator<N2, D>,
{
    #[inline]
    fn to_superset(&self) -> Transform<N2, D, C> {
        Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
    }
    #[inline]
    fn is_in_subset(t: &Transform<N2, D, C>) -> bool {
        <Self as SubsetOf<_>>::is_in_subset(t.matrix())
    }
    #[inline]
    unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
        Self::from_superset_unchecked(t.matrix())
    }
}
impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Similarity<N1, D, R>
where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    R: Rotation<Point<N1, D>>
        + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
        + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>, 
    DefaultAllocator: Allocator<N1, D>
        + Allocator<N1, D, D>
        + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<(usize, usize), D>
        + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<N2, D, D>
        + Allocator<N2, D>,
{
    #[inline]
    fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>> {
        self.to_homogeneous().to_superset()
    }
    #[inline]
    fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool {
        let mut rot = m.fixed_slice::<D, D>(0, 0).clone_owned();
        if rot.fixed_columns_mut::<U1>(0)
            .try_normalize_mut(N2::zero())
            .is_some()
            && rot.fixed_columns_mut::<U1>(1)
                .try_normalize_mut(N2::zero())
                .is_some()
            && rot.fixed_columns_mut::<U1>(2)
                .try_normalize_mut(N2::zero())
                .is_some()
        {
            
            
            if rot.determinant() < N2::zero() {
                rot.fixed_columns_mut::<U1>(0).neg_mut();
                rot.fixed_columns_mut::<U1>(1).neg_mut();
                rot.fixed_columns_mut::<U1>(2).neg_mut();
            }
            let bottom = m.fixed_slice::<U1, D>(D::dim(), 0);
            
            m.iter().all(|e| SupersetOf::<N1>::is_in_subset(e)) &&
            
            
            
            bottom.iter().all(|e| e.is_zero()) && m[(D::dim(), D::dim())] == N2::one()
        } else {
            false
        }
    }
    #[inline]
    unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
        let mut mm = m.clone_owned();
        let na = mm.fixed_slice_mut::<D, U1>(0, 0).normalize_mut();
        let nb = mm.fixed_slice_mut::<D, U1>(0, 1).normalize_mut();
        let nc = mm.fixed_slice_mut::<D, U1>(0, 2).normalize_mut();
        let mut scale = (na + nb + nc) / ::convert(3.0); 
        
        
        if mm.fixed_slice::<D, D>(0, 0).determinant() < N2::zero() {
            mm.fixed_slice_mut::<D, U1>(0, 0).neg_mut();
            mm.fixed_slice_mut::<D, U1>(0, 1).neg_mut();
            mm.fixed_slice_mut::<D, U1>(0, 2).neg_mut();
            scale = -scale;
        }
        let t = m.fixed_slice::<D, U1>(0, D::dim()).into_owned();
        let t = Translation::from_vector(::convert_unchecked(t));
        Self::from_parts(t, ::convert_unchecked(mm), ::convert_unchecked(scale))
    }
}