1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
//! Abstract definition of a matrix data storage. use std::mem; use std::any::Any; use core::Scalar; use dimension::Dim; use allocator::{Allocator, SameShapeR, SameShapeC}; /* * Aliases for sum storage. */ /// The data storage for the sum of two matrices with dimensions `(R1, C1)` and `(R2, C2)`. pub type SumStorage<N, R1, C1, R2, C2, SA> = <<SA as Storage<N, R1, C1>>::Alloc as Allocator<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>>>::Buffer; /* * Aliases for multiplication storage. */ /// The data storage for the multiplication of two matrices with dimensions `(R1, C1)` on the left /// hand side, and with `C2` columns on the right hand side. pub type MulStorage<N, R1, C1, C2, SA> = <<SA as Storage<N, R1, C1>>::Alloc as Allocator<N, R1, C2>>::Buffer; /// The data storage for the multiplication of two matrices with dimensions `(R1, C1)` on the left /// hand side, and with `C2` columns on the right hand side. The first matrix is implicitly /// transposed. pub type TrMulStorage<N, R1, C1, C2, SA> = <<SA as Storage<N, R1, C1>>::Alloc as Allocator<N, C1, C2>>::Buffer; /* * Alias for allocation result. */ /// The owned data storage that can be allocated from `S`. pub type Owned<N, R, C, A> = <A as Allocator<N, R, C>>::Buffer; /// The trait shared by all matrix data storage. /// /// FIXME: doc /// /// Note that `Self` must always have a number of elements compatible with the matrix length (given /// by `R` and `C` if they are known at compile-time). For example, implementors of this trait /// should **not** allow the user to modify the size of the underlying buffer with safe methods /// (for example the `MatrixVec::data_mut` method is unsafe because the user could change the /// vector's size so that it no longer contains enough elements: this will lead to UB. pub unsafe trait Storage<N: Scalar, R: Dim, C: Dim>: Sized { /// The static stride of this storage's rows. type RStride: Dim; /// The static stride of this storage's columns. type CStride: Dim; /// The allocator for this family of storage. type Alloc: Allocator<N, R, C>; /// Builds a matrix data storage that does not contain any reference. fn into_owned(self) -> Owned<N, R, C, Self::Alloc>; /// Clones this data storage into one that does not contain any reference. fn clone_owned(&self) -> Owned<N, R, C, Self::Alloc>; /// The matrix data pointer. fn ptr(&self) -> *const N; /// The dimension of the matrix at run-time. Arr length of zero indicates the additive identity /// element of any dimension. Must be equal to `Self::dimension()` if it is not `None`. fn shape(&self) -> (R, C); /// The spacing between concecutive row elements and consecutive column elements. /// /// For example this returns `(1, 5)` for a row-major matrix with 5 columns. fn strides(&self) -> (Self::RStride, Self::CStride); /// Compute the index corresponding to the irow-th row and icol-th column of this matrix. The /// index must be such that the following holds: /// /// ```.ignore /// let lindex = self.linear_index(irow, icol); /// assert!(*self.get_unchecked(irow, icol) == *self.get_unchecked_linear(lindex) /// ``` #[inline] fn linear_index(&self, irow: usize, icol: usize) -> usize { let (rstride, cstride) = self.strides(); irow * rstride.value() + icol * cstride.value() } /// Gets the address of the i-th matrix component without performing bound-checking. #[inline] unsafe fn get_address_unchecked_linear(&self, i: usize) -> *const N { self.ptr().offset(i as isize) } /// Gets the address of the i-th matrix component without performing bound-checking. #[inline] unsafe fn get_address_unchecked(&self, irow: usize, icol: usize) -> *const N { self.get_address_unchecked_linear(self.linear_index(irow, icol)) } /// Retrieves a reference to the i-th element without bound-checking. #[inline] unsafe fn get_unchecked_linear(&self, i: usize) -> &N { &*self.get_address_unchecked_linear(i) } /// Retrieves a reference to the i-th element without bound-checking. #[inline] unsafe fn get_unchecked(&self, irow: usize, icol: usize) -> &N { self.get_unchecked_linear(self.linear_index(irow, icol)) } } /// Trait implemented by matrix data storage that can provide a mutable access to its elements. /// /// Note that a mutable access does not mean that the matrix owns its data. For example, a mutable /// matrix slice can provide mutable access to its elements even if it does not own its data (it /// contains only an internal reference to them). pub unsafe trait StorageMut<N: Scalar, R: Dim, C: Dim>: Storage<N, R, C> { /// The matrix mutable data pointer. fn ptr_mut(&mut self) -> *mut N; /// Gets the mutable address of the i-th matrix component without performing bound-checking. #[inline] unsafe fn get_address_unchecked_linear_mut(&mut self, i: usize) -> *mut N { self.ptr_mut().offset(i as isize) } /// Gets the mutable address of the i-th matrix component without performing bound-checking. #[inline] unsafe fn get_address_unchecked_mut(&mut self, irow: usize, icol: usize) -> *mut N { let lid = self.linear_index(irow, icol); self.get_address_unchecked_linear_mut(lid) } /// Retrieves a mutable reference to the i-th element without bound-checking. unsafe fn get_unchecked_linear_mut(&mut self, i: usize) -> &mut N { &mut *self.get_address_unchecked_linear_mut(i) } /// Retrieves a mutable reference to the element at `(irow, icol)` without bound-checking. #[inline] unsafe fn get_unchecked_mut(&mut self, irow: usize, icol: usize) -> &mut N { &mut *self.get_address_unchecked_mut(irow, icol) } /// Swaps two elements using their linear index without bound-checking. #[inline] unsafe fn swap_unchecked_linear(&mut self, i1: usize, i2: usize) { let a = self.get_address_unchecked_linear_mut(i1); let b = self.get_address_unchecked_linear_mut(i2); mem::swap(&mut *a, &mut *b); } /// Swaps two elements without bound-checking. #[inline] unsafe fn swap_unchecked(&mut self, row_col1: (usize, usize), row_col2: (usize, usize)) { let lid1 = self.linear_index(row_col1.0, row_col1.1); let lid2 = self.linear_index(row_col2.0, row_col2.1); self.swap_unchecked_linear(lid1, lid2) } } /// A matrix storage that does not contain any reference and that is stored contiguously in memory. /// /// The storage requirement means that for any value of `i` in `[0, nrows * ncols[`, the value /// `.get_unchecked_linear` succeeds. This trait is unsafe because failing to comply to this may /// cause Undefined Behaviors. pub unsafe trait OwnedStorage<N: Scalar, R: Dim, C: Dim>: StorageMut<N, R, C> + Clone + Any where Self::Alloc: Allocator<N, R, C, Buffer = Self> { // NOTE: We could auto-impl those two methods but we don't to make sure the user is aware that // data must be contiguous. /// Converts this data storage to a slice. #[inline] fn as_slice(&self) -> &[N]; /// Converts this data storage to a mutable slice. #[inline] fn as_mut_slice(&mut self) -> &mut [N]; }