1use std::ops::Add;
7
8use num_traits::Zero;
9
10use nalgebra::storage::RawStorage;
11use nalgebra::{ClosedAddAssign, DMatrix, Dim, Matrix, Scalar};
12
13use crate::coo::CooMatrix;
14use crate::cs;
15use crate::csc::CscMatrix;
16use crate::csr::CsrMatrix;
17use crate::utils::{apply_permutation, compute_sort_permutation};
18
19pub fn convert_dense_coo<T, R, C, S>(dense: &Matrix<T, R, C, S>) -> CooMatrix<T>
21where
22    T: Scalar + Zero,
23    R: Dim,
24    C: Dim,
25    S: RawStorage<T, R, C>,
26{
27    let mut coo = CooMatrix::new(dense.nrows(), dense.ncols());
28
29    for (index, v) in dense.iter().enumerate() {
30        if v != &T::zero() {
31            let i = index % dense.nrows();
33            let j = index / dense.nrows();
34            coo.push(i, j, v.clone());
35        }
36    }
37
38    coo
39}
40
41pub fn convert_coo_dense<T>(coo: &CooMatrix<T>) -> DMatrix<T>
43where
44    T: Scalar + Zero + ClosedAddAssign,
45{
46    let mut output = DMatrix::repeat(coo.nrows(), coo.ncols(), T::zero());
47    for (i, j, v) in coo.triplet_iter() {
48        output[(i, j)] += v.clone();
49    }
50    output
51}
52
53pub fn convert_coo_csr<T>(coo: &CooMatrix<T>) -> CsrMatrix<T>
55where
56    T: Scalar + Zero,
57{
58    let (offsets, indices, values) = convert_coo_cs(
59        coo.nrows(),
60        coo.row_indices(),
61        coo.col_indices(),
62        coo.values(),
63    );
64
65    CsrMatrix::try_from_csr_data(coo.nrows(), coo.ncols(), offsets, indices, values)
68        .expect("Internal error: Invalid CSR data during COO->CSR conversion")
69}
70
71pub fn convert_csr_coo<T: Scalar>(csr: &CsrMatrix<T>) -> CooMatrix<T> {
73    let mut result = CooMatrix::new(csr.nrows(), csr.ncols());
74    for (i, j, v) in csr.triplet_iter() {
75        result.push(i, j, v.clone());
76    }
77    result
78}
79
80pub fn convert_csr_dense<T>(csr: &CsrMatrix<T>) -> DMatrix<T>
82where
83    T: Scalar + ClosedAddAssign + Zero,
84{
85    let mut output = DMatrix::zeros(csr.nrows(), csr.ncols());
86
87    for (i, j, v) in csr.triplet_iter() {
88        output[(i, j)] += v.clone();
89    }
90
91    output
92}
93
94pub fn convert_dense_csr<T, R, C, S>(dense: &Matrix<T, R, C, S>) -> CsrMatrix<T>
96where
97    T: Scalar + Zero,
98    R: Dim,
99    C: Dim,
100    S: RawStorage<T, R, C>,
101{
102    let mut row_offsets = Vec::with_capacity(dense.nrows() + 1);
103    let mut col_idx = Vec::new();
104    let mut values = Vec::new();
105
106    row_offsets.push(0);
110    for i in 0..dense.nrows() {
111        for j in 0..dense.ncols() {
112            let v = dense.index((i, j));
113            if v != &T::zero() {
114                col_idx.push(j);
115                values.push(v.clone());
116            }
117        }
118        row_offsets.push(col_idx.len());
119    }
120
121    CsrMatrix::try_from_csr_data(dense.nrows(), dense.ncols(), row_offsets, col_idx, values)
124        .expect("Internal error: Invalid CsrMatrix format during dense-> CSR conversion")
125}
126
127pub fn convert_coo_csc<T>(coo: &CooMatrix<T>) -> CscMatrix<T>
129where
130    T: Scalar + Zero,
131{
132    let (offsets, indices, values) = convert_coo_cs(
133        coo.ncols(),
134        coo.col_indices(),
135        coo.row_indices(),
136        coo.values(),
137    );
138
139    CscMatrix::try_from_csc_data(coo.nrows(), coo.ncols(), offsets, indices, values)
142        .expect("Internal error: Invalid CSC data during COO->CSC conversion")
143}
144
145pub fn convert_csc_coo<T>(csc: &CscMatrix<T>) -> CooMatrix<T>
147where
148    T: Scalar,
149{
150    let mut coo = CooMatrix::new(csc.nrows(), csc.ncols());
151    for (i, j, v) in csc.triplet_iter() {
152        coo.push(i, j, v.clone());
153    }
154    coo
155}
156
157pub fn convert_csc_dense<T>(csc: &CscMatrix<T>) -> DMatrix<T>
159where
160    T: Scalar + ClosedAddAssign + Zero,
161{
162    let mut output = DMatrix::zeros(csc.nrows(), csc.ncols());
163
164    for (i, j, v) in csc.triplet_iter() {
165        output[(i, j)] += v.clone();
166    }
167
168    output
169}
170
171pub fn convert_dense_csc<T, R, C, S>(dense: &Matrix<T, R, C, S>) -> CscMatrix<T>
173where
174    T: Scalar + Zero,
175    R: Dim,
176    C: Dim,
177    S: RawStorage<T, R, C>,
178{
179    let mut col_offsets = Vec::with_capacity(dense.ncols() + 1);
180    let mut row_idx = Vec::new();
181    let mut values = Vec::new();
182
183    col_offsets.push(0);
184    for j in 0..dense.ncols() {
185        for i in 0..dense.nrows() {
186            let v = dense.index((i, j));
187            if v != &T::zero() {
188                row_idx.push(i);
189                values.push(v.clone());
190            }
191        }
192        col_offsets.push(row_idx.len());
193    }
194
195    CscMatrix::try_from_csc_data(dense.nrows(), dense.ncols(), col_offsets, row_idx, values)
198        .expect("Internal error: Invalid CscMatrix format during dense-> CSC conversion")
199}
200
201pub fn convert_csr_csc<T>(csr: &CsrMatrix<T>) -> CscMatrix<T>
203where
204    T: Scalar,
205{
206    let (offsets, indices, values) = cs::transpose_cs(
207        csr.nrows(),
208        csr.ncols(),
209        csr.row_offsets(),
210        csr.col_indices(),
211        csr.values(),
212    );
213
214    CscMatrix::try_from_csc_data(csr.nrows(), csr.ncols(), offsets, indices, values)
216        .expect("Internal error: Invalid CSC data during CSR->CSC conversion")
217}
218
219pub fn convert_csc_csr<T>(csc: &CscMatrix<T>) -> CsrMatrix<T>
221where
222    T: Scalar,
223{
224    let (offsets, indices, values) = cs::transpose_cs(
225        csc.ncols(),
226        csc.nrows(),
227        csc.col_offsets(),
228        csc.row_indices(),
229        csc.values(),
230    );
231
232    CsrMatrix::try_from_csr_data(csc.nrows(), csc.ncols(), offsets, indices, values)
234        .expect("Internal error: Invalid CSR data during CSC->CSR conversion")
235}
236
237fn convert_coo_cs<T>(
238    major_dim: usize,
239    major_indices: &[usize],
240    minor_indices: &[usize],
241    values: &[T],
242) -> (Vec<usize>, Vec<usize>, Vec<T>)
243where
244    T: Scalar + Zero,
245{
246    assert_eq!(major_indices.len(), minor_indices.len());
247    assert_eq!(minor_indices.len(), values.len());
248    let nnz = major_indices.len();
249
250    let (unsorted_major_offsets, unsorted_minor_idx, unsorted_vals) = {
251        let mut offsets = vec![0usize; major_dim + 1];
252        let mut minor_idx = vec![0usize; nnz];
253        let mut vals = vec![T::zero(); nnz];
254        coo_to_unsorted_cs(
255            &mut offsets,
256            &mut minor_idx,
257            &mut vals,
258            major_dim,
259            major_indices,
260            minor_indices,
261            values,
262        );
263        (offsets, minor_idx, vals)
264    };
265
266    let mut sorted_major_offsets = Vec::new();
272    let mut sorted_minor_idx = Vec::new();
273    let mut sorted_vals = Vec::new();
274
275    sorted_major_offsets.push(0);
276
277    let mut idx_workspace = Vec::new();
281    let mut perm_workspace = Vec::new();
282    let mut values_workspace = Vec::new();
283
284    for lane in 0..major_dim {
285        let begin = unsorted_major_offsets[lane];
286        let end = unsorted_major_offsets[lane + 1];
287        let count = end - begin;
288        let range = begin..end;
289
290        perm_workspace.resize(count, 0);
292        idx_workspace.resize(count, 0);
293        values_workspace.resize(count, T::zero());
294        sort_lane(
295            &mut idx_workspace[..count],
296            &mut values_workspace[..count],
297            &unsorted_minor_idx[range.clone()],
298            &unsorted_vals[range.clone()],
299            &mut perm_workspace[..count],
300        );
301
302        let sorted_ja_current_len = sorted_minor_idx.len();
303
304        combine_duplicates(
305            |idx| sorted_minor_idx.push(idx),
306            |val| sorted_vals.push(val),
307            &idx_workspace[..count],
308            &values_workspace[..count],
309            Add::add,
310        );
311
312        let new_col_count = sorted_minor_idx.len() - sorted_ja_current_len;
313        sorted_major_offsets.push(sorted_major_offsets.last().unwrap() + new_col_count);
314    }
315
316    (sorted_major_offsets, sorted_minor_idx, sorted_vals)
317}
318
319fn coo_to_unsorted_cs<T: Clone>(
324    major_offsets: &mut [usize],
325    cs_minor_idx: &mut [usize],
326    cs_values: &mut [T],
327    major_dim: usize,
328    major_indices: &[usize],
329    minor_indices: &[usize],
330    coo_values: &[T],
331) {
332    assert_eq!(major_offsets.len(), major_dim + 1);
333    assert_eq!(cs_minor_idx.len(), cs_values.len());
334    assert_eq!(cs_values.len(), major_indices.len());
335    assert_eq!(major_indices.len(), minor_indices.len());
336    assert_eq!(minor_indices.len(), coo_values.len());
337
338    for major_idx in major_indices {
340        major_offsets[*major_idx] += 1;
341    }
342
343    cs::convert_counts_to_offsets(major_offsets);
344
345    {
346        let mut current_counts = vec![0usize; major_dim + 1];
350        let triplet_iter = major_indices.iter().zip(minor_indices).zip(coo_values);
351        for ((i, j), value) in triplet_iter {
352            let current_offset = major_offsets[*i] + current_counts[*i];
353            cs_minor_idx[current_offset] = *j;
354            cs_values[current_offset] = value.clone();
355            current_counts[*i] += 1;
356        }
357    }
358}
359
360fn sort_lane<T: Clone>(
368    minor_idx_result: &mut [usize],
369    values_result: &mut [T],
370    minor_idx: &[usize],
371    values: &[T],
372    workspace: &mut [usize],
373) {
374    assert_eq!(minor_idx_result.len(), values_result.len());
375    assert_eq!(values_result.len(), minor_idx.len());
376    assert_eq!(minor_idx.len(), values.len());
377    assert_eq!(values.len(), workspace.len());
378
379    let permutation = workspace;
380    compute_sort_permutation(permutation, minor_idx);
381
382    apply_permutation(minor_idx_result, minor_idx, permutation);
383    apply_permutation(values_result, values, permutation);
384}
385
386fn combine_duplicates<T: Clone>(
389    mut produce_idx: impl FnMut(usize),
390    mut produce_value: impl FnMut(T),
391    idx_array: &[usize],
392    values: &[T],
393    combiner: impl Fn(T, T) -> T,
394) {
395    assert_eq!(idx_array.len(), values.len());
396
397    let mut i = 0;
398    while i < idx_array.len() {
399        let idx = idx_array[i];
400        let mut combined_value = values[i].clone();
401        let mut j = i + 1;
402        while j < idx_array.len() && idx_array[j] == idx {
403            let j_val = values[j].clone();
404            combined_value = combiner(combined_value, j_val);
405            j += 1;
406        }
407        produce_idx(idx);
408        produce_value(combined_value);
409        i = j;
410    }
411}