1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
cfg_if! {
if #[cfg(feature = "zstd_support")]
{
use std::fs;
use log::info;
use zstd::{bulk::Compressor, dict::from_continuous};
use super::compression_config::CompressionMode;
pub struct Encoder {
result: Vec<u8>,
encoder: EncoderType,
}
impl Encoder {
pub fn new(compression_mode: CompressionMode) -> Self {
let encoder = match compression_mode {
CompressionMode::Training(sample_size) => {
EncoderType::DictionaryTrainer(DictionaryTrainer::new(sample_size))
}
CompressionMode::Default(compression_level) => EncoderType::Compressor(
Compressor::new(compression_level).expect("error creating Compressor"),
),
CompressionMode::Dictionary(compression_level, dictionary) => EncoderType::Compressor(
Compressor::with_dictionary(compression_level, &dictionary)
.expect("error creating Compressor with dictionary"),
),
};
Self {
result: Vec::new(),
encoder,
}
}
pub fn encode(&mut self, payload: &[u8]) -> &[u8] {
match &mut self.encoder {
EncoderType::DictionaryTrainer(trainer) => {
trainer.record_bytes(payload);
self.result = payload.to_vec();
return &self.result;
}
EncoderType::Compressor(encoder) => {
self.result = encoder.compress(payload).expect("encode error");
return &self.result;
}
}
}
}
pub enum EncoderType {
Compressor(Compressor<'static>),
DictionaryTrainer(DictionaryTrainer),
}
pub struct DictionaryTrainer {
sample_data: Vec<u8>,
sample_sizes: Vec<usize>,
next_alert_size: usize,
target_sample_size: usize,
training_complete: bool,
}
impl DictionaryTrainer {
pub fn new(target_sample_size: usize) -> Self {
Self {
target_sample_size,
sample_data: Vec::new(),
sample_sizes: Vec::new(),
next_alert_size: 0,
training_complete: false,
}
}
pub fn record_bytes(&mut self, bytes: &[u8]) {
if self.training_complete {
return;
}
self.sample_data.extend_from_slice(bytes);
self.sample_sizes.push(bytes.len());
let current_sample_size = self.sample_sizes.len();
if current_sample_size >= self.next_alert_size {
let percent =
((self.next_alert_size as f32) / (self.target_sample_size as f32)) * 100.0;
info!("Dictionary training: {}% complete", percent);
self.next_alert_size += self.target_sample_size / 20;
}
if current_sample_size >= self.target_sample_size {
info!("Dictionary training complete!");
info!(
"Samples: {} ({} KB)",
self.sample_sizes.len(),
self.sample_data.len()
);
info!("Dictionary processing sample data...");
let target_dict_size = self.sample_data.len() / 100;
let dictionary =
from_continuous(&self.sample_data, &self.sample_sizes, target_dict_size)
.expect("Error while training dictionary");
fs::write("dictionary.txt", dictionary)
.expect("Error while writing dictionary to file");
info!("Dictionary written to `dictionary.txt`!");
self.training_complete = true;
}
}
}
}
else
{
use super::compression_config::CompressionMode;
pub struct Encoder {
result: Vec<u8>
}
impl Encoder {
pub fn new(_: CompressionMode) -> Self {
Self {
result: Vec::new(),
}
}
pub fn encode(&mut self, payload: &[u8]) -> &[u8] {
self.result = payload.to_vec();
&self.result
}
}
}
}