1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
use std::collections::HashMap;

use super::{
    sequence_buffer::{sequence_greater_than, SequenceBuffer, SequenceNumber},
    standard_header::StandardHeader,
};

use super::{
    entities::entity_notifiable::EntityNotifiable,
    events::{event_manager::EventManager, event_type::EventType},
    packet_type::PacketType,
};

const REDUNDANT_PACKET_ACKS_SIZE: u16 = 32;
const DEFAULT_SEND_PACKETS_SIZE: usize = 256;

/// Keeps track of sent & received packets, and contains ack information that is
/// copied into the standard header on each outgoing packet
#[derive(Debug)]
pub struct AckManager {
    // Local sequence number which we'll bump each time we send a new packet over the network.
    sequence_number: SequenceNumber,
    // The last acked sequence number of the packets we've sent to the remote host.
    remote_ack_sequence_num: SequenceNumber,
    // Using a `Hashmap` to track every packet we send out so we can ensure that we can resend when
    // dropped.
    sent_packets: HashMap<u16, SentPacket>,
    // However, we can only reasonably ack up to `REDUNDANT_PACKET_ACKS_SIZE + 1` packets on each
    // message we send so this should be that large.
    received_packets: SequenceBuffer<ReceivedPacket>,
}

impl AckManager {
    /// Create a new AckManager
    pub fn new() -> Self {
        AckManager {
            sequence_number: 0,
            remote_ack_sequence_num: u16::max_value(),
            sent_packets: HashMap::with_capacity(DEFAULT_SEND_PACKETS_SIZE),
            received_packets: SequenceBuffer::with_capacity(REDUNDANT_PACKET_ACKS_SIZE + 1),
        }
    }

    /// Get the index of the next outgoing packet
    pub fn local_sequence_num(&self) -> SequenceNumber {
        self.sequence_number
    }

    /// Process an incoming packet, handle notifications of delivered / dropped
    /// packets
    pub fn process_incoming<T: EventType>(
        &mut self,
        payload: &[u8],
        event_manager: &mut EventManager<T>,
        entity_notifiable: &mut Option<&mut dyn EntityNotifiable>,
    ) -> Box<[u8]> {
        let (header, stripped_message) = StandardHeader::read(payload);
        let remote_seq_num = header.sequence();
        let remote_ack_seq = header.ack_seq();
        let mut remote_ack_field = header.ack_field();

        self.received_packets
            .insert(remote_seq_num, ReceivedPacket {});

        // ensure that `self.remote_ack_sequence_num` is always increasing (with
        // wrapping)
        if sequence_greater_than(remote_ack_seq, self.remote_ack_sequence_num) {
            self.remote_ack_sequence_num = remote_ack_seq;
        }

        // the current `remote_ack_seq` was (clearly) received so we should remove it
        if let Some(sent_packet) = self.sent_packets.get(&remote_ack_seq) {
            if sent_packet.packet_type == PacketType::Data {
                self.notify_packet_delivered(remote_ack_seq, event_manager, entity_notifiable);
            }

            self.sent_packets.remove(&remote_ack_seq);
        }

        // The `remote_ack_field` is going to include whether or not the past 32 packets
        // have been received successfully. If so, we have no need to resend old
        // packets.
        for i in 1..=REDUNDANT_PACKET_ACKS_SIZE {
            let ack_sequence = remote_ack_seq.wrapping_sub(i);
            if let Some(sent_packet) = self.sent_packets.get(&ack_sequence) {
                if remote_ack_field & 1 == 1 {
                    if sent_packet.packet_type == PacketType::Data {
                        self.notify_packet_delivered(
                            ack_sequence,
                            event_manager,
                            entity_notifiable,
                        );
                    }

                    self.sent_packets.remove(&ack_sequence);
                } else {
                    if sent_packet.packet_type == PacketType::Data {
                        self.notify_packet_dropped(ack_sequence, event_manager, entity_notifiable);
                    }
                    self.sent_packets.remove(&ack_sequence);
                }
            }

            remote_ack_field >>= 1;
        }

        stripped_message
    }

    /// Process an outgoing packet, adding the correct header which includes ack
    /// information, and returning the bytes needed to send over the wire
    pub fn process_outgoing(&mut self, packet_type: PacketType, payload: &[u8]) -> Box<[u8]> {
        // Add Ack Header onto message!
        let mut header_bytes = Vec::new();

        let seq_num = self.local_sequence_num();
        let last_seq = self.remote_sequence_num();
        let bit_field = self.ack_bitfield();

        let header = StandardHeader::new(packet_type, seq_num, last_seq, bit_field);
        header.write(&mut header_bytes);

        // Ack stuff //
        self.sent_packets.insert(
            self.sequence_number,
            SentPacket {
                id: self.sequence_number as u32,
                packet_type,
            },
        );

        // bump the local sequence number for the next outgoing packet
        self.sequence_number = self.sequence_number.wrapping_add(1);
        ///////////////

        [header_bytes.as_slice(), &payload]
            .concat()
            .into_boxed_slice()
    }

    fn notify_packet_delivered<T: EventType>(
        &self,
        packet_sequence_number: u16,
        event_manager: &mut EventManager<T>,
        entity_notifiable: &mut Option<&mut dyn EntityNotifiable>,
    ) {
        event_manager.notify_packet_delivered(packet_sequence_number);
        if let Some(notifiable) = entity_notifiable {
            notifiable.notify_packet_delivered(packet_sequence_number);
        }
    }

    fn notify_packet_dropped<T: EventType>(
        &self,
        packet_sequence_number: u16,
        event_manager: &mut EventManager<T>,
        entity_notifiable: &mut Option<&mut dyn EntityNotifiable>,
    ) {
        event_manager.notify_packet_dropped(packet_sequence_number);
        if let Some(notifiable) = entity_notifiable {
            notifiable.notify_packet_dropped(packet_sequence_number);
        }
    }

    fn remote_sequence_num(&self) -> SequenceNumber {
        self.received_packets.sequence_num().wrapping_sub(1)
    }

    fn ack_bitfield(&self) -> u32 {
        let most_recent_remote_seq_num: u16 = self.remote_sequence_num();
        let mut ack_bitfield: u32 = 0;
        let mut mask: u32 = 1;

        // iterate the past `REDUNDANT_PACKET_ACKS_SIZE` received packets and set the
        // corresponding bit for each packet which exists in the buffer.
        for i in 1..=REDUNDANT_PACKET_ACKS_SIZE {
            let sequence = most_recent_remote_seq_num.wrapping_sub(i);
            if self.received_packets.exists(sequence) {
                ack_bitfield |= mask;
            }
            mask <<= 1;
        }

        ack_bitfield
    }
}

#[derive(Clone, Debug, PartialEq)]
pub struct SentPacket {
    pub id: u32,
    pub packet_type: PacketType,
}

#[derive(Clone, Debug, Default)]
pub struct ReceivedPacket;