1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
use crate::geom::CurveLinesIterator;
use crate::geom::Line;
use crate::geom::Point;

///
/// See: https://youtu.be/aVwxzDHniEw
/// See: https://pomax.github.io/bezierinfo/
///
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct BCurve<const N: usize> {
    pub(crate) points: [Point; N],
}

#[derive(Copy, Clone, Debug, PartialEq)]
struct CurvePoint(pub Line);

/// The number of times to chop up a curve when calculating it's length.
/// Number picked is entirely arbituary. I have no idea if it's a good / bad number.
const LENGTH_SEGMENTS: u32 = 12;

impl<const N: usize> BCurve<N> {
    pub fn new_from_points(points: [Point; N]) -> Self {
        Self { points }
    }

    pub fn as_line(&self) -> Line {
        Line(self.start(), self.end())
    }

    pub fn start(&self) -> Point {
        self.points[0]
    }

    pub fn end(&self) -> Point {
        self.points[N - 1]
    }

    pub fn interpolation_line(self, start_n: f32, end_n: f32) -> Line {
        Line(
            self.interpolation_point(start_n),
            self.interpolation_point(end_n),
        )
    }

    pub fn interpolation_point(self, n: f32) -> Point {
        let mut ps: [Point; N] = self.points.clone();

        let mut count = N - 1;
        while count > 0 {
            for i in 0..count {
                ps[i] = Line(ps[i], ps[i + 1]).transition_point(n);
            }

            count -= 1;
        }

        ps[0]
    }

    /// An approximate total length for the curve.
    pub fn length(self) -> f32 {
        self.length_by_segments(LENGTH_SEGMENTS)
    }

    /// Calculates an approximate length of the curve,
    /// using the number of segments you provide.
    ///
    /// The lower the number of segments, the faster this will run.
    /// However it will be less accurate. A higher number will be slower,
    /// but more accurate.
    fn length_by_segments(self, num_segments: u32) -> f32 {
        self.iter_interpolation_lines(num_segments)
            .fold(0.0, |total, line| total + line.hypot())
    }

    pub fn iter_interpolation_lines<'a>(&'a self, num_lines: u32) -> CurveLinesIterator<'a, N> {
        CurveLinesIterator::new(self, num_lines)
    }
}

impl<const N: usize> Into<Line> for BCurve<N> {
    fn into(self) -> Line {
        self.as_line()
    }
}

#[cfg(test)]
mod interpolation_line {
    use super::*;

    #[test]
    fn it_should_return_whole_line_when_from_start_to_end() {
        let curve = BCurve::new_from_points([
            Point(100.0, 100.0),
            Point(200.0, 200.0),
            Point(200.0, 400.0),
            Point(100.0, 500.0),
        ]);

        assert_eq!(
            curve.interpolation_line(0.0, 1.0),
            Line(Point(100.0, 100.0), Point(100.0, 500.0)),
        );
    }

    #[test]
    fn it_should_return_first_half_on_straight_curve() {
        let curve = BCurve::new_from_points([
            Point(1.0, 0.0),
            Point(1.0, 2.0),
            Point(1.0, 8.0),
            Point(1.0, 10.0),
        ]);

        assert_eq!(
            curve.interpolation_line(0.0, 0.5),
            Line(Point(1.0, 0.0), Point(1.0, 5.0)),
        );
    }
}

#[cfg(test)]
mod interpolation_point {
    use super::*;

    #[test]
    fn it_should_return_first_half_on_straight_curve() {
        let curve = BCurve::new_from_points([
            Point(1.0, 0.0),
            Point(1.0, 2.0),
            Point(1.0, 8.0),
            Point(1.0, 10.0),
        ]);

        assert_eq!(curve.interpolation_point(0.5), Point(1.0, 5.0));
    }
}

#[cfg(test)]
mod iter_interpolation_lines {
    use super::*;
    use crate::geom::Point;

    #[test]
    fn it_should_return_number_of_lines_asked_for() {
        let curve = BCurve::new_from_points([
            Point(1.0, 0.0),
            Point(1.0, 2.0),
            Point(1.0, 8.0),
            Point(1.0, 10.0),
        ]);

        assert_eq!(13, curve.iter_interpolation_lines(13).count());
    }

    #[test]
    fn it_should_return_the_lines_we_expect() {
        let curve = BCurve::new_from_points([
            Point(0.0, 0.0),
            Point(0.0, 0.0),
            Point(10.0, 10.0),
            Point(10.0, 10.0),
        ]);

        let lines: Vec<Line> = curve.iter_interpolation_lines(4).collect();
        assert_eq!(
            lines,
            &[
                Line(Point(0.0, 0.0), Point(1.5625, 1.5625)),
                Line(Point(1.5625, 1.5625), Point(5.0, 5.0)),
                Line(Point(5.0, 5.0), Point(8.4375, 8.4375)),
                Line(Point(8.4375, 8.4375), Point(10.0, 10.0))
            ]
        );
    }
}