murrelet_livecode 0.1.2

livecode base functions for murrelet, a livecode framework
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
#![allow(dead_code)]
use std::{f64::consts::PI, fmt::Debug};

use evalexpr::*;
use glam::{vec2, Vec2};
use itertools::Itertools;
use murrelet_common::{clamp, ease, lerp, map_range, smoothstep, IdxInRange, LivecodeValue};
use noise::{NoiseFn, Perlin};
use rand::{rngs::StdRng, Rng, SeedableRng};

use crate::types::{AdditionalContextNode, LivecodeError, LivecodeResult};

pub fn init_evalexpr_func_ctx() -> LivecodeResult<HashMapContext> {
    context_map!{
        // constants
        "PI" => Value::Float(PI),
        "ROOT2" => Value::Float(2.0_f64.sqrt()),
        "ROOT3" => Value::Float(3.0_f64.sqrt()),

        // functions
        "print" => Function::new(move |argument| {
            if let Ok(a) = argument.as_float() {
                println!("{:?} (float)", a);
            } else {
                let a = argument.as_int()?;
                println!("{:?} (int)", a);
            }
            Ok(Value::Empty)
        }),
        "manymod" => Function::new(move |argument| {
            let a = argument.as_tuple()?;

            let mut result = 0;
            let mut offset = 1;

            for val in &a {
                let tuple = val.as_fixed_len_tuple(2)?;
                let (var, mod_thing) = (tuple[0].as_number()? as i64, tuple[1].as_number()? as i64);

                result += (var % mod_thing) * offset;
                offset *= mod_thing;
            }
            Ok(Value::Int(result))
        }),

        "clamp" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(3)?;
            let (x, min, max) = (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?);
            let f = clamp(x as f32, min as f32, max as f32);
            Ok(Value::Float(f as f64))
        }),
        "mix" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(3)?;
            let (min, max, pct) = (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?);
            let f = lerp(min as f32, max as f32, pct as f32);
            Ok(Value::Float(f as f64))
        }),
        "s" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(3)?;
            let (src, out_min, out_max) = (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?);
            let f = map_range(src, 0.0, 1.0, out_min, out_max);
            Ok(Value::Float(f as f64))
        }),
        "s11" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(3)?;
            let (src, out_min, out_max) = (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?);
            let f = map_range(src, -1.0, 1.0, out_min, out_max);
            Ok(Value::Float(f as f64))
        }),
        "slog" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(3)?;
            let (src, out_min, out_max) = (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?);
            let f = map_range(src, 0.0, 1.0, 10.0f64.powf(out_min), 10.0f64.powf(out_max));
            Ok(Value::Float(f as f64))
        }),
        "remap" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(5)?;
            let (src, in_min, in_max, out_min, out_max) = (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?, tuple[3].as_number()?, tuple[4].as_number()?);
            let f = map_range(src, in_min, in_max, out_min, out_max);
            Ok(Value::Float(f as f64))
        }),
        // map and clamp. clmap.
        "clmap" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(5)?;
            let (src, in_min, in_max, out_min, out_max) = (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?, tuple[3].as_number()?, tuple[4].as_number()?);
            let f = map_range(clamp(src, in_min, in_max), in_min, in_max, out_min, out_max);
            Ok(Value::Float(f as f64))
        }),
        // tri(i) makes 0.5 be 1, and 0 and 1 be 0
        "tri" => Function::new(|argument| {
            let src = argument.as_number()?;
            let f = 1.0 - (src * 2.0 - 1.0).abs();
            Ok(Value::Float(f))
        }),
        // bounce(t, 0.25)
        "bounce" => Function::new(|argument| {
            let (src, mult, offset) = match argument.as_fixed_len_tuple(3) {
                Ok(tuple) => (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?),
                Err(_) => {
                    let tuple = argument.as_fixed_len_tuple(2)?;
                    (tuple[0].as_number()?, tuple[1].as_number()?, 0.0)
                }
            };
            let f = ((src * mult + offset) * PI * 2.0).sin() * 0.5 + 0.5;
            Ok(Value::Float(f))
        }),
        "saw" => Function::new(|argument| {
            let tuple = argument.as_fixed_len_tuple(2)?;
            let (src, mult) = (tuple[0].as_number()?, tuple[1].as_number()?);
            // make a sawtooth
            let f = ((src * mult) % 2.0 - 1.0).abs();
            Ok(Value::Float(f))
        }),
        "ease" => Function::new(|argument| {
            let (src, mult, offset) = match argument.as_fixed_len_tuple(3) {
                Ok(tuple) => (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?),
                Err(_) => {
                    let tuple = argument.as_fixed_len_tuple(2)?;
                    (tuple[0].as_number()?, tuple[1].as_number()?, 0.0)
                }
            };
            let f = ease(src, mult, offset);
            Ok(Value::Float(f))
        }),
        "smoothstep" => Function::new(|argument| {
            let tuple = argument.as_fixed_len_tuple(3)?;
            let (t, edge0, edge1) = (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?);
            let f = smoothstep(t, edge0, edge1);
            Ok(Value::Float(f))
        }),
        "step" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(2)?;
            let (src, val) = (tuple[0].as_number()?, tuple[1].as_number()?);
            let f = if src > val { 1.0 } else { 0.0 };
            Ok(Value::Float(f))
        }),
        "pulse" => Function::new(|argument| {
            let tuple = argument.as_fixed_len_tuple(3)?;
            let (pct, t, size) = (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?);
            let f = smoothstep(t, pct - size, pct) - smoothstep(t, pct, pct + size);
            Ok(Value::Float(f))
        }),
        "ramp" => Function::new(|argument| {
            let tuple = argument.as_fixed_len_tuple(2)?;
            let (src, length) = (tuple[0].as_number()?, tuple[1].as_number()?);
            let f = (src * length).fract();
            Ok(Value::Float(f))
        }),
        "idx" => Function::new(|argument| {
            let tuple = argument.as_fixed_len_tuple(2)?;
            let (src, idx) = (tuple[0].as_tuple()?, tuple[1].as_number()?);
            let idx = (idx as usize) % src.len();
            let f = &src[idx];
            Ok(f.clone())
        }),
        "rn" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(2)?;
            let (seed, idx) = (tuple[0].as_number()?, tuple[1].as_number()?);
            let rn = StdRng::seed_from_u64((seed + 19247.0 * idx) as u64).gen_range(0.0..1.0);
            Ok(Value::Float(rn))
        }),
        "perlin" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(3)?;
            let (x, y, z) = (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?);
            let perlin = Perlin::new(42); // todo, should we add seed to the inputs?
            let rn = perlin.get([x, y, z]);
            Ok(Value::Float(rn))
        }),
        "len" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(2)?;
            let (x, y) = (tuple[0].as_number()?, tuple[1].as_number()?);

            let len = vec2(x as f32, y as f32).length();
            Ok(Value::Float(len as f64))
        }),

        "pow" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(2)?;
            let (x, y) = (tuple[0].as_number()?, tuple[1].as_number()?);

            let p = x.powf(y);
            Ok(Value::Float(p))
        }),
        "sin" => Function::new(move |argument| {
            let (t, w, phase) = match argument.as_fixed_len_tuple(3) {
                Ok(tuple) => (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?),
                Err(_) => {
                    match argument.as_fixed_len_tuple(2) {
                        Ok(tuple) => (tuple[0].as_number()?, tuple[1].as_number()?, 0.0),
                        Err(_) => {
                            (argument.as_float()?, 1.0, 0.0)
                        },
                    }
                }
            };
            let f = (PI * 2.0 * (w * t + phase)).sin();
            Ok(Value::Float(f))
        }),
        "cos" => Function::new(move |argument| {
            let (t, w, phase) = match argument.as_fixed_len_tuple(3) {
                Ok(tuple) => (tuple[0].as_number()?, tuple[1].as_number()?, tuple[2].as_number()?),
                Err(_) => {
                    match argument.as_fixed_len_tuple(2) {
                        Ok(tuple) => (tuple[0].as_number()?, tuple[1].as_number()?, 0.0),
                        Err(_) => {
                            (argument.as_float()?, 1.0, 0.0)
                        },
                    }
                }
            };
            let f = (PI * 2.0 * (w * t + phase)).cos();
            Ok(Value::Float(f))
        }),
        "res" => Function::new(move |argument| {
            let tuple = argument.as_fixed_len_tuple(9)?;
            let (x, y, aa, bb, m, n, a, b) = (
                tuple[0].as_number()?, tuple[1].as_number()?,
                tuple[2].as_number()?, tuple[3].as_number()?,
                tuple[4].as_number()?, tuple[5].as_number()?,
                tuple[6].as_number()?, tuple[7].as_number()?,
            );
            let f = aa * (m * PI * x / a).cos() * (n * PI * y / a).cos() - bb * (n * PI * x / b).cos() * (m * PI * y / b).cos();
            Ok(Value::Float(f))
        })
    }.map_err(|err| {LivecodeError::EvalExpr("error in init_evalexpr_func_ctx!".to_string(), err)})
}

fn lc_val_to_expr(v: &LivecodeValue) -> Value {
    match v {
        LivecodeValue::Float(f) => Value::Float(*f),
        LivecodeValue::Bool(f) => Value::Boolean(*f),
        LivecodeValue::Int(f) => Value::Int(*f),
    }
}

// simple mapping of values
#[derive(Debug, Clone)]
pub struct ExprWorldContextValues(Vec<(String, LivecodeValue)>);
impl ExprWorldContextValues {
    pub fn new(v: Vec<(String, LivecodeValue)>) -> Self {
        Self(v)
    }

    pub fn update_ctx(&self, ctx: &mut HashMapContext) -> LivecodeResult<()> {
        for (identifier, value) in &self.0 {
            // todo, maybe handle the result here to help dev
            ctx.set_value(identifier.to_owned(), lc_val_to_expr(value))
                .map_err(|err| {
                    LivecodeError::EvalExpr(format!("error setting value {}", identifier), err)
                })?;
        }
        Ok(())
    }

    pub fn set_val(&mut self, name: &str, val: LivecodeValue) {
        self.0.push((name.to_owned(), val))
    }

    pub fn new_from_idx(idx: IdxInRange) -> Self {
        Self::new(vec![
            ("i".to_string(), LivecodeValue::Int(idx.i() as i64)),
            ("if".to_string(), LivecodeValue::Float(idx.i() as f64)),
            ("pct".to_string(), LivecodeValue::Float(idx.pct() as f64)),
            ("total".to_string(), LivecodeValue::Int(idx.total() as i64)),
            (
                "totalf".to_string(),
                LivecodeValue::Float(idx.total() as f64),
            ),
        ])
    }

    pub fn new_from_totaless_idx(idx: usize) -> Self {
        Self::new(vec![
            ("i".to_string(), LivecodeValue::Int(idx as i64)),
            ("if".to_string(), LivecodeValue::Float(idx as f64)),
        ])
    }

    pub fn with_prefix(&self, prefix: &str) -> Self {
        let new_vals = self
            .0
            .iter()
            .map(|(name, value)| (format!("{}{}", prefix, name), *value))
            .collect_vec();
        Self::new(new_vals)
    }

    fn combine(&mut self, vals: ExprWorldContextValues) -> Self {
        // have the new ones added later, so they'll overwrite if there are duplicates...
        Self::new([self.0.clone(), vals.0].concat())
    }
}

pub trait IntoExprWorldContext {
    fn as_expr_world_context_values(&self) -> ExprWorldContextValues;
}

impl IntoExprWorldContext for Vec<(String, f32)> {
    fn as_expr_world_context_values(&self) -> ExprWorldContextValues {
        let v = self
            .iter()
            .map(|(s, x)| (s.to_owned(), LivecodeValue::Float(*x as f64)))
            .collect_vec();
        ExprWorldContextValues(v)
    }
}

#[derive(Debug, Clone, Copy)]
pub enum GuideType {
    Horizontal,
    Diag,
}
impl GuideType {
    pub fn guides(&self) -> Vec<Vec2> {
        match self {
            GuideType::Horizontal => vec![
                // left-right
                vec2(-50.0, 0.0),
                vec2(50.0, 0.0),
                vec2(0.0, 0.0),
                // up-down
                vec2(0.0, -50.0),
                vec2(0.0, 50.0),
            ],
            GuideType::Diag => {
                vec![
                    // diag
                    vec2(50.0, -50.0),
                    vec2(-50.0, 50.0),
                    // diag
                    vec2(50.0, 50.0),
                    vec2(-50.0, -50.0),
                ]
            }
        }
    }

    pub fn border(&self) -> Vec<Vec2> {
        match self {
            GuideType::Diag => {
                vec![
                    vec2(0.0, 50.0),
                    vec2(50.0, 0.0),
                    vec2(0.0, -50.0),
                    vec2(-50.0, 0.0),
                ]
            }
            GuideType::Horizontal => {
                vec![
                    vec2(-50.0, -50.0),
                    vec2(50.0, -50.0),
                    vec2(50.0, 50.0),
                    vec2(-50.0, 50.0),
                ]
            }
        }
    }
}

#[derive(Debug, Clone)]
pub struct MixedEvalDefs {
    vals: ExprWorldContextValues,
    nodes: Vec<AdditionalContextNode>, // these need to stack
}
impl Default for MixedEvalDefs {
    fn default() -> Self {
        Self::new()
    }
}

impl MixedEvalDefs {
    pub fn new() -> Self {
        Self {
            vals: ExprWorldContextValues::new(vec![]),
            nodes: Vec::new(),
        }
    }

    pub fn new_from_expr(vals: ExprWorldContextValues) -> Self {
        Self {
            vals,
            nodes: Vec::new(),
        }
    }

    pub fn set_vals(&mut self, vals: ExprWorldContextValues) {
        self.vals = self.vals.combine(vals);
    }

    pub fn update_ctx(&self, ctx: &mut HashMapContext) -> LivecodeResult<()> {
        self.vals.update_ctx(ctx)?;
        // go from beginning to end
        for node in self.nodes.iter() {
            node.eval_raw(ctx)?;
        }

        Ok(())
    }

    pub fn set_val(&mut self, name: &str, val: LivecodeValue) {
        self.vals.set_val(name, val)
    }

    pub fn add_node(&mut self, node: AdditionalContextNode) {
        self.nodes.push(node)
    }

    pub fn combine(&self, more_defs: &MixedEvalDefs) -> Self {
        let mut c = self.clone();
        more_defs
            .nodes
            .iter()
            .for_each(|node| c.nodes.push(node.clone()));
        c.set_vals(more_defs.vals.clone());

        c
    }

    pub fn new_simple(name: &str, val: LivecodeValue) -> Self {
        let mut c = Self::new();
        c.set_val(name, val);
        c
    }
}