1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
use crate::core::{ErrorKind, Key, Memcached, Meta, MtopError, SlabItems, Slabs, Stats, Value};
use crate::discovery::{Server, ServerID};
use crate::net::{tcp_connect, tcp_tls_connect, tls_client_config, TlsConfig};
use crate::pool::{ClientFactory, ClientPool, ClientPoolConfig, PooledClient};
use std::collections::hash_map::DefaultHasher;
use std::collections::HashMap;
use std::hash::Hasher;
use std::sync::Arc;
use tokio::runtime::Handle;
use tokio::sync::RwLock;
use tokio_rustls::rustls::pki_types::ServerName;
use tokio_rustls::rustls::ClientConfig;
use tracing::instrument::WithSubscriber;
#[derive(Debug, Clone)]
pub struct MemcachedClientConfig {
pub pool_max_idle: u64,
}
impl Default for MemcachedClientConfig {
fn default() -> Self {
Self { pool_max_idle: 4 }
}
}
/// Implementation of a `ClientFactory` that creates new Memcached clients that
/// use plaintext or TLS TCP connections.
#[derive(Debug)]
pub struct MemcachedFactory {
client_config: Option<Arc<ClientConfig>>,
server_name: Option<ServerName<'static>>,
}
impl MemcachedFactory {
pub async fn new(handle: Handle, tls: TlsConfig) -> Result<Self, MtopError> {
let server_name = if tls.enabled { tls.server_name.clone() } else { None };
let client_config = if tls.enabled {
Some(Arc::new(tls_client_config(handle, tls).await?))
} else {
None
};
Ok(Self {
client_config,
server_name,
})
}
}
impl ClientFactory<Server, Memcached> for MemcachedFactory {
async fn make(&self, addr: &Server) -> Result<Memcached, MtopError> {
if let Some(cfg) = &self.client_config {
let server_name = self.server_name.clone().unwrap_or_else(|| addr.server_name());
let (read, write) = tcp_tls_connect(addr.address(), server_name, cfg.clone()).await?;
Ok(Memcached::new(read, write))
} else {
let (read, write) = tcp_connect(addr.address()).await?;
Ok(Memcached::new(read, write))
}
}
}
/// Logic for picking a server to "own" a particular cache key that uses
/// rendezvous hashing.
///
/// See https://en.wikipedia.org/wiki/Rendezvous_hashing
#[derive(Debug)]
pub struct SelectorRendezvous {
servers: RwLock<Vec<Server>>,
}
impl SelectorRendezvous {
/// Create a new instance with the provided initial server list
pub fn new(servers: Vec<Server>) -> Self {
Self {
servers: RwLock::new(servers),
}
}
fn score(server: &Server, key: &Key) -> u64 {
let mut hasher = DefaultHasher::new();
hasher.write(server.id().as_ref().as_bytes());
hasher.write(key.as_ref().as_bytes());
hasher.finish()
}
/// Get a copy of all current servers.
pub async fn servers(&self) -> Vec<Server> {
let servers = self.servers.read().await;
servers.clone()
}
/// Get the `Server` that owns the given key, or none if there are no servers.
pub async fn server(&self, key: &Key) -> Option<Server> {
let servers = self.servers.read().await;
if servers.is_empty() {
None
} else if servers.len() == 1 {
servers.first().cloned()
} else {
let mut max = u64::MIN;
let mut choice = None;
for server in servers.iter() {
let score = Self::score(server, key);
if score > max {
choice = Some(server);
max = score;
}
}
choice.cloned()
}
}
/// Update the list of potential servers to pick from.
pub async fn set_servers(&self, servers: Vec<Server>) {
let mut current = self.servers.write().await;
*current = servers
}
}
/// Response for both values and errors from multiple servers, indexed by server.
#[derive(Debug, Default)]
pub struct ServersResponse<T> {
pub values: HashMap<ServerID, T>,
pub errors: HashMap<ServerID, MtopError>,
}
impl<T> ServersResponse<T> {
/// Return true if there are any errors, false otherwise.
pub fn has_errors(&self) -> bool {
!self.errors.is_empty()
}
}
/// Response for values indexed by key and errors indexed by server.
#[derive(Debug, Default)]
pub struct ValuesResponse {
pub values: HashMap<String, Value>,
pub errors: HashMap<ServerID, MtopError>,
}
impl ValuesResponse {
/// Return true if there are any errors, false otherwise.
pub fn has_errors(&self) -> bool {
!self.errors.is_empty()
}
}
#[derive(Debug)]
pub struct MemcachedClient<F>
where
F: ClientFactory<Server, Memcached> + Send + Sync + 'static,
{
handle: Handle,
selector: SelectorRendezvous,
pool: Arc<ClientPool<Server, Memcached, F>>,
}
/// Run a method for a particular server in a spawned future.
macro_rules! spawn_for_host {
($self:ident, $method:ident, $host:expr $(, $args:expr)* $(,)?) => {{
let pool = $self.pool.clone();
$self.handle.spawn(async move {
let mut conn = pool.get($host).await?;
match conn.$method($($args,)*).await {
Ok(v) => {
pool.put(conn).await;
Ok(v)
}
Err(e) => {
// Only return the client to the pool if error was due to an
// expected server error. Otherwise, we have no way to know the
// state of the client and associated connection.
if e.kind() == ErrorKind::Protocol {
pool.put(conn).await;
}
Err(e)
}
}
}
// Ensure this new future uses the same subscriber as the current one.
.with_current_subscriber())
}};
}
/// Run a method on a connection to a particular server based on the hash of a single key.
macro_rules! operation_for_key {
($self:ident, $method:ident, $key:expr $(, $args:expr)* $(,)?) => {{
let key = Key::one($key)?;
if let Some(s) = $self.selector.server(&key).await {
let mut conn = $self.pool.get(&s).await?;
match conn.$method(&key, $($args,)*).await {
Ok(v) => {
$self.pool.put(conn).await;
Ok(v)
}
Err(e) => {
// Only return the client to the pool if error was due to an expected
// server error. Otherwise, we have no way to know the state of the client
// and associated connection.
if e.kind() == ErrorKind::Protocol {
$self.pool.put(conn).await;
}
Err(e)
}
}
} else {
Err(MtopError::runtime("no servers available"))
}
}};
}
/// Run a method on a connection to every server and bucket the results and errors by server.
macro_rules! operation_for_all {
($self:ident, $method:ident) => {{
let servers = $self.selector.servers().await;
let tasks = servers
.into_iter()
.map(|server| (server.clone(), spawn_for_host!($self, $method, &server)))
.collect::<Vec<_>>();
let mut values = HashMap::with_capacity(tasks.len());
let mut errors = HashMap::new();
for (server, task) in tasks {
match task.await {
Ok(Ok(results)) => {
values.insert(server.id(), results);
}
Ok(Err(e)) => {
errors.insert(server.id(), e);
}
Err(e) => {
errors.insert(server.id(), MtopError::runtime_cause("fetching cluster values", e));
}
};
}
Ok(ServersResponse { values, errors })
}};
}
impl<F> MemcachedClient<F>
where
F: ClientFactory<Server, Memcached> + Send + Sync + 'static,
{
/// Create a new `MemcachedClient` instance.
///
/// `handle` is used to spawn multiple async tasks to fetch data from servers in
/// parallel. `selector` is used to determine which server "owns" a particular key.
/// `pool` is used for pooling or establishing new connections to each server as
/// needed.
pub fn new(cfg: MemcachedClientConfig, handle: Handle, selector: SelectorRendezvous, factory: F) -> Self {
let pool_config = ClientPoolConfig {
name: "memcached-tcp".to_owned(),
max_idle: cfg.pool_max_idle,
};
Self {
handle,
selector,
pool: Arc::new(ClientPool::new(pool_config, factory)),
}
}
/// Get a connection to a particular server from the pool if available, otherwise
/// establish a new connection.
pub async fn raw_open(&self, server: &Server) -> Result<PooledClient<Server, Memcached>, MtopError> {
self.pool.get(server).await
}
/// Return a connection to a particular server to the pool if fewer than the configured
/// number of idle connections to that server are currently in the pool, otherwise close
/// it immediately.
pub async fn raw_close(&self, connection: PooledClient<Server, Memcached>) {
self.pool.put(connection).await
}
/// Get a `Stats` object with the current values of the interesting stats for each server.
///
/// A future is spawned for each server with results and any errors indexed by server. A
/// pooled connection to each server is used if available, otherwise new connections are
/// established.
pub async fn stats(&self) -> Result<ServersResponse<Stats>, MtopError> {
operation_for_all!(self, stats)
}
/// Get a `Slabs` object with information about each set of `Slab`s maintained by each server.
/// You can think of each `Slab` as a class of objects that are stored together in memory. Note
/// that `Slab` IDs may not be contiguous based on the size of items actually stored by the server.
///
/// A future is spawned for each server with results and any errors indexed by server. A
/// pooled connection to each server is used if available, otherwise new connections are
/// established.
pub async fn slabs(&self) -> Result<ServersResponse<Slabs>, MtopError> {
operation_for_all!(self, slabs)
}
/// Get a `SlabsItems` object with information about the `SlabItem` items stored in
/// each slab class maintained by each server. The ID of each `SlabItem` corresponds to a
/// `Slab` maintained by the server. Note that `SlabItem` IDs may not be contiguous based
/// on the size of items actually stored by the server.
///
/// A future is spawned for each server with results and any errors indexed by server. A
/// pooled connection to each server is used if available, otherwise new connections are
/// established.
pub async fn items(&self) -> Result<ServersResponse<SlabItems>, MtopError> {
operation_for_all!(self, items)
}
/// Get a `Meta` object for every item in the cache for each server which includes its key
/// and expiration time as a UNIX timestamp. Expiration time will be `-1` if the item was
/// set with an infinite TTL.
///
/// A future is spawned for each server with results and any errors indexed by server. A
/// pooled connection to each server is used if available, otherwise new connections are
/// established.
pub async fn metas(&self) -> Result<ServersResponse<Vec<Meta>>, MtopError> {
operation_for_all!(self, metas)
}
/// Send a simple command to verify our connection each known server.
///
/// A future is spawned for each server with results and any errors indexed by server. A
/// pooled connection to each server is used if available, otherwise new connections are
/// established.
pub async fn ping(&self) -> Result<ServersResponse<()>, MtopError> {
operation_for_all!(self, ping)
}
/// Get a map of the requested keys and their corresponding `Value` in the cache
/// including the key, flags, and data.
///
/// This method uses a selector implementation to determine which server "owns" each of the
/// provided keys. A future is spawned for each server and the results merged together. A
/// pooled connection to each server is used if available, otherwise new connections are
/// established.
pub async fn get<I, K>(&self, keys: I) -> Result<ValuesResponse, MtopError>
where
I: IntoIterator<Item = K>,
K: Into<String>,
{
let keys = Key::many(keys)?;
if keys.is_empty() {
return Ok(ValuesResponse::default());
}
let num_keys = keys.len();
let mut by_server: HashMap<Server, Vec<Key>> = HashMap::new();
for key in keys {
if let Some(s) = self.selector.server(&key).await {
let entry = by_server.entry(s).or_default();
entry.push(key);
}
}
let tasks = by_server
.into_iter()
.map(|(server, keys)| (server.clone(), spawn_for_host!(self, get, &server, &keys)))
.collect::<Vec<_>>();
let mut values = HashMap::with_capacity(num_keys);
let mut errors = HashMap::new();
for (server, task) in tasks {
match task.await {
Ok(Ok(results)) => {
values.extend(results);
}
Ok(Err(e)) => {
errors.insert(server.id(), e);
}
Err(e) => {
errors.insert(server.id(), MtopError::runtime_cause("fetching keys", e));
}
};
}
Ok(ValuesResponse { values, errors })
}
/// Increment the value of a key by the given delta if the value is numeric returning
/// the new value. Returns an error if the value is not set or _not_ numeric.
///
/// This method uses a selector implementation to determine which server "owns" the provided
/// key. A pooled connection to the server is used if available, otherwise a new connection
/// is established.
pub async fn incr<K>(&self, key: K, delta: u64) -> Result<u64, MtopError>
where
K: Into<String>,
{
operation_for_key!(self, incr, key, delta)
}
/// Decrement the value of a key by the given delta if the value is numeric returning
/// the new value with a minimum of 0. Returns an error if the value is not set or _not_
/// numeric.
///
/// This method uses a selector implementation to determine which server "owns" the provided
/// key. A pooled connection to the server is used if available, otherwise a new connection
/// is established.
pub async fn decr<K>(&self, key: K, delta: u64) -> Result<u64, MtopError>
where
K: Into<String>,
{
operation_for_key!(self, decr, key, delta)
}
/// Store the provided item in the cache, regardless of whether it already exists.
///
/// This method uses a selector implementation to determine which server "owns" the provided
/// key. A pooled connection to the server is used if available, otherwise a new connection
/// is established.
pub async fn set<K, V>(&self, key: K, flags: u64, ttl: u32, data: V) -> Result<(), MtopError>
where
K: Into<String>,
V: AsRef<[u8]>,
{
operation_for_key!(self, set, key, flags, ttl, data)
}
/// Store the provided item in the cache only if it does not already exist.
///
/// This method uses a selector implementation to determine which server "owns" the provided
/// key. A pooled connection to the server is used if available, otherwise a new connection
/// is established.
pub async fn add<K, V>(&self, key: K, flags: u64, ttl: u32, data: V) -> Result<(), MtopError>
where
K: Into<String>,
V: AsRef<[u8]>,
{
operation_for_key!(self, add, key, flags, ttl, data)
}
/// Store the provided item in the cache only if it already exists.
///
/// This method uses a selector implementation to determine which server "owns" the provided
/// key. A pooled connection to the server is used if available, otherwise a new connection
/// is established.
pub async fn replace<K, V>(&self, key: K, flags: u64, ttl: u32, data: V) -> Result<(), MtopError>
where
K: Into<String>,
V: AsRef<[u8]>,
{
operation_for_key!(self, replace, key, flags, ttl, data)
}
/// Update the TTL of an item in the cache if it exists, return an error otherwise.
///
/// This method uses a selector implementation to determine which server "owns" the provided
/// key. A pooled connection to the server is used if available, otherwise a new connection
/// is established.
pub async fn touch<K>(&self, key: K, ttl: u32) -> Result<(), MtopError>
where
K: Into<String>,
{
operation_for_key!(self, touch, key, ttl)
}
/// Delete an item from the cache if it exists, return an error otherwise.
///
/// This method uses a selector implementation to determine which server "owns" the provided
/// key. A pooled connection to the server is used if available, otherwise a new connection
/// is established.
pub async fn delete<K>(&self, key: K) -> Result<(), MtopError>
where
K: Into<String>,
{
operation_for_key!(self, delete, key)
}
}
#[cfg(test)]
mod test {
// TODO: Actually figure out how to test this without a bunch of boilerplate.
///////////
// stats //
///////////
#[tokio::test]
async fn test_memcached_client_stats_no_servers() {}
#[tokio::test]
async fn test_memcached_client_stats_no_errors() {}
#[tokio::test]
async fn test_memcached_client_stats_some_errors() {}
///////////
// slabs //
///////////
#[tokio::test]
async fn test_memcached_client_slabs_no_servers() {}
#[tokio::test]
async fn test_memcached_client_slabs_no_errors() {}
#[tokio::test]
async fn test_memcached_client_slabs_some_errors() {}
///////////
// items //
///////////
#[tokio::test]
async fn test_memcached_client_items_no_servers() {}
#[tokio::test]
async fn test_memcached_client_items_no_errors() {}
#[tokio::test]
async fn test_memcached_client_items_some_errors() {}
///////////
// metas //
///////////
#[tokio::test]
async fn test_memcached_client_metas_no_servers() {}
#[tokio::test]
async fn test_memcached_client_metas_no_errors() {}
#[tokio::test]
async fn test_memcached_client_metas_some_errors() {}
//////////
// ping //
//////////
#[tokio::test]
async fn test_memcached_client_ping_no_servers() {}
#[tokio::test]
async fn test_memcached_client_ping_no_errors() {}
#[tokio::test]
async fn test_memcached_client_ping_some_errors() {}
/////////
// get //
/////////
#[tokio::test]
async fn test_memcached_client_get_invalid_keys() {}
#[tokio::test]
async fn test_memcached_client_get_no_keys() {}
#[tokio::test]
async fn test_memcached_client_get_no_servers() {}
#[tokio::test]
async fn test_memcached_client_get_no_errors() {}
#[tokio::test]
async fn test_memcached_client_get_some_errors() {}
//////////
// incr //
//////////
#[tokio::test]
async fn test_memcached_client_incr_no_servers() {}
#[tokio::test]
async fn test_memcached_client_incr_success() {}
//////////
// decr //
//////////
#[tokio::test]
async fn test_memcached_client_decr_no_servers() {}
#[tokio::test]
async fn test_memcached_client_decr_success() {}
/////////
// set //
/////////
#[tokio::test]
async fn test_memcached_client_set_no_servers() {}
#[tokio::test]
async fn test_memcached_client_set_success() {}
/////////
// add //
/////////
#[tokio::test]
async fn test_memcached_client_add_no_servers() {}
#[tokio::test]
async fn test_memcached_client_add_success() {}
/////////////
// replace //
/////////////
#[tokio::test]
async fn test_memcached_client_replace_no_servers() {}
#[tokio::test]
async fn test_memcached_client_replace_success() {}
///////////
// touch //
///////////
#[tokio::test]
async fn test_memcached_client_touch_no_servers() {}
#[tokio::test]
async fn test_memcached_client_touch_success() {}
////////////
// delete //
////////////
#[tokio::test]
async fn test_memcached_client_delete_no_servers() {}
#[tokio::test]
async fn test_memcached_client_delete_success() {}
}