1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
//! provides diffing algorithm which returns patches
//!
use crate::{
    node::attribute::group_attributes_per_name,
    patch::{
        AddAttributes,
        AppendChildren,
        ChangeText,
        RemoveAttributes,
        RemoveNode,
        ReplaceNode,
    },
    Attribute,
    Element,
    Node,
    Patch,
};
use keyed_elements::diff_keyed_elements;
use std::{
    cmp,
    fmt,
    mem,
};

mod keyed_elements;

/// calculate the difference of 2 nodes
/// the supplied key will be taken into account
/// that if the 2 keys differ, the element will be replaced without having to traverse the children
/// nodes
pub fn diff_with_key<'a, NS, TAG, ATT, VAL, EVENT, MSG>(
    old: &'a Node<NS, TAG, ATT, VAL, EVENT, MSG>,
    new: &'a Node<NS, TAG, ATT, VAL, EVENT, MSG>,
    key: &ATT,
) -> Vec<Patch<'a, NS, TAG, ATT, VAL, EVENT, MSG>>
where
    TAG: PartialEq + fmt::Debug,
    ATT: PartialEq + fmt::Debug,
    NS: PartialEq + fmt::Debug,
    VAL: PartialEq + fmt::Debug,
{
    diff_recursive(old, new, &mut 0, key)
}

/// increment the cur_node_idx based on how many descendant it contains.
///
/// Note: This is not including the count of itself, since the node is being processed and the cur_node_idx is
/// incremented in the loop together with its siblings
pub(crate) fn increment_node_idx_to_descendant_count<
    NS,
    TAG,
    ATT,
    VAL,
    EVENT,
    MSG,
>(
    node: &Node<NS, TAG, ATT, VAL, EVENT, MSG>,
    cur_node_idx: &mut usize,
) {
    match node {
        Node::Element(element_node) => {
            for child in element_node.get_children().iter() {
                *cur_node_idx += 1;
                increment_node_idx_to_descendant_count(&child, cur_node_idx);
            }
        }
        Node::Text(_txt) => {
            // as is
        }
    }
}

/// returns true if any of the node children has key in their attributes
fn is_any_children_keyed<'a, NS, TAG, ATT, VAL, EVENT, MSG>(
    element: &'a Element<NS, TAG, ATT, VAL, EVENT, MSG>,
    key: &ATT,
) -> bool
where
    ATT: PartialEq,
{
    element
        .get_children()
        .iter()
        .any(|child| is_keyed_node(child, key))
}

/// returns true any attributes of this node attribute has key in it
fn is_keyed_node<'a, NS, TAG, ATT, VAL, EVENT, MSG>(
    node: &'a Node<NS, TAG, ATT, VAL, EVENT, MSG>,
    key: &ATT,
) -> bool
where
    ATT: PartialEq,
{
    if let Some(attributes) = node.get_attributes() {
        attributes.iter().any(|att| att.name == *key)
    } else {
        false
    }
}

fn diff_recursive<'a, 'b, NS, TAG, ATT, VAL, EVENT, MSG>(
    old: &'a Node<NS, TAG, ATT, VAL, EVENT, MSG>,
    new: &'a Node<NS, TAG, ATT, VAL, EVENT, MSG>,
    cur_node_idx: &'b mut usize,
    key: &ATT,
) -> Vec<Patch<'a, NS, TAG, ATT, VAL, EVENT, MSG>>
where
    NS: PartialEq + fmt::Debug,
    TAG: PartialEq + fmt::Debug,
    ATT: PartialEq + fmt::Debug,
    VAL: PartialEq + fmt::Debug,
{
    //log::trace!("entering diff_recursive at cur_node_idx: {}", cur_node_idx);
    let mut patches = vec![];
    // Different enum variants, replace!
    let mut replace = mem::discriminant(old) != mem::discriminant(new);

    if let (Node::Element(old_element), Node::Element(new_element)) = (old, new)
    {
        // Replace if there are different element tags
        if old_element.tag != new_element.tag {
            replace = true;
        }
    }

    // Handle replacing of a node
    if replace {
        patches.push(
            ReplaceNode::new(
                old.tag().expect("must have a tag"),
                *cur_node_idx,
                &new,
            )
            .into(),
        );
        increment_node_idx_to_descendant_count(old, cur_node_idx);
        return patches;
    }

    // The following comparison can only contain identical variants, other
    // cases have already been handled above by comparing variant
    // discriminants.
    match (old, new) {
        // We're comparing two text nodes
        (Node::Text(old_text), Node::Text(new_text)) => {
            if old_text != new_text {
                let ct = ChangeText::new(*cur_node_idx, old_text, new_text);
                patches.push(Patch::ChangeText(ct));
            }
        }

        // We're comparing two element nodes
        (Node::Element(old_element), Node::Element(new_element)) => {
            if is_any_children_keyed(old_element, key)
                || is_any_children_keyed(new_element, key)
            {
                let keyed_patches = diff_keyed_elements(
                    old_element,
                    new_element,
                    key,
                    cur_node_idx,
                );
                patches.extend(keyed_patches);
            } else {
                let non_keyed_patches = diff_non_keyed_elements(
                    old_element,
                    new_element,
                    key,
                    cur_node_idx,
                );
                patches.extend(non_keyed_patches);
            }
        }
        (Node::Text(_), Node::Element(_))
        | (Node::Element(_), Node::Text(_)) => {
            unreachable!("Unequal variant discriminants should already have been handled");
        }
    };

    patches
}

/// In diffing non_keyed elements,
///  we reuse existing DOM elements as much as possible
///
///  The algorithm used here is very simple.
///
///  If there are more children in the old_element than the new_element
///  the excess children is all removed.
///
///  If there are more children in the new_element than the old_element
///  it will be all appended in the old_element.
///
///
fn diff_non_keyed_elements<'a, 'b, NS, TAG, ATT, VAL, EVENT, MSG>(
    old_element: &'a Element<NS, TAG, ATT, VAL, EVENT, MSG>,
    new_element: &'a Element<NS, TAG, ATT, VAL, EVENT, MSG>,
    key: &ATT,
    cur_node_idx: &'b mut usize,
) -> Vec<Patch<'a, NS, TAG, ATT, VAL, EVENT, MSG>>
where
    NS: PartialEq + fmt::Debug,
    TAG: PartialEq + fmt::Debug,
    ATT: PartialEq + fmt::Debug,
    VAL: PartialEq + fmt::Debug,
{
    let mut patches = vec![];
    let attributes_patches =
        diff_attributes(old_element, new_element, cur_node_idx);
    patches.extend(attributes_patches);

    let old_child_count = old_element.children.len();
    let new_child_count = new_element.children.len();

    // If there are more new child than old child, we make a patch to append the excess element
    // starting from old_child_count to the last item of the new_elements
    if new_child_count > old_child_count {
        let append_patch: Vec<&'a Node<NS, TAG, ATT, VAL, EVENT, MSG>> =
            new_element.children[old_child_count..].iter().collect();

        patches.push(
            AppendChildren::new(&old_element.tag, *cur_node_idx, append_patch)
                .into(),
        )
    }

    let min_count = cmp::min(old_child_count, new_child_count);
    for index in 0..min_count {
        *cur_node_idx += 1;

        let old_child =
            &old_element.children.get(index).expect("No old child node");
        let new_child =
            &new_element.children.get(index).expect("No new chold node");

        let more_patches =
            diff_recursive(old_child, new_child, cur_node_idx, key);
        patches.extend(more_patches);
    }

    if new_child_count < old_child_count {
        for old_child in old_element.get_children().iter().skip(new_child_count)
        {
            *cur_node_idx += 1;
            patches
                .push(RemoveNode::new(old_child.tag(), *cur_node_idx).into());
            increment_node_idx_to_descendant_count(old_child, cur_node_idx);
        }
    }

    patches
}

/// diff the attributes of old element to the new element at this cur_node_idx
///
/// Note: The performance bottlenecks
///     - allocating new vec
///     - merging attributes of the same name
fn diff_attributes<'a, 'b, NS, TAG, ATT, VAL, EVENT, MSG>(
    old_element: &'a Element<NS, TAG, ATT, VAL, EVENT, MSG>,
    new_element: &'a Element<NS, TAG, ATT, VAL, EVENT, MSG>,
    cur_node_idx: &'b mut usize,
) -> Vec<Patch<'a, NS, TAG, ATT, VAL, EVENT, MSG>>
where
    NS: PartialEq + fmt::Debug,
    ATT: PartialEq + fmt::Debug,
    VAL: PartialEq + fmt::Debug,
{
    let mut patches = vec![];
    let mut add_attributes: Vec<&Attribute<NS, ATT, VAL, EVENT, MSG>> = vec![];
    let mut remove_attributes: Vec<&Attribute<NS, ATT, VAL, EVENT, MSG>> =
        vec![];

    let new_attributes_grouped =
        group_attributes_per_name(new_element.get_attributes());
    let old_attributes_grouped =
        group_attributes_per_name(old_element.get_attributes());

    // for all new elements that doesn't exist in the old elements
    // or the values differ
    // add it to the AddAttribute patches
    for (new_attr_name, new_attrs) in new_attributes_grouped.iter() {
        // Issue: only the first found attribute's value is returned
        // This could be problematic if there are multiple attributes of the same name
        let old_attr_values = old_attributes_grouped
            .iter()
            .find(|(att_name, _)| att_name == new_attr_name)
            .map(|(_, attrs)| {
                attrs.iter().map(|attr| &attr.value).collect::<Vec<_>>()
            });

        let new_attr_values = new_attributes_grouped
            .iter()
            .find(|(att_name, _)| att_name == new_attr_name)
            .map(|(_, attrs)| {
                attrs.iter().map(|attr| &attr.value).collect::<Vec<_>>()
            });

        if let Some(old_attr_values) = old_attr_values {
            let new_attr_values =
                new_attr_values.expect("must have new attr values");
            if old_attr_values != new_attr_values {
                add_attributes.extend(new_attrs);
            }
        } else {
            add_attributes.extend(new_attrs);
        }
    }

    // if this attribute name does not exist anymore
    // to the new element, remove it
    for (old_attr_name, old_attrs) in old_attributes_grouped.iter() {
        if let Some(_pre_attr) = new_attributes_grouped
            .iter()
            .find(|(new_attr_name, _)| new_attr_name == old_attr_name)
        {
            //
        } else {
            remove_attributes.extend(old_attrs);
        }
    }

    if !add_attributes.is_empty() {
        patches.push(
            AddAttributes::new(&old_element.tag, *cur_node_idx, add_attributes)
                .into(),
        );
    }
    if !remove_attributes.is_empty() {
        patches.push(
            RemoveAttributes::new(
                &old_element.tag,
                *cur_node_idx,
                remove_attributes,
            )
            .into(),
        );
    }
    patches
}