1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
//! # MPR121-Hal
//!
//! This crate follows the [Adafruit implementation](https://github.com/adafruit/Adafruit_MPR121) closely but exposes it in terms of the embedded-hal project.
//!
//! The main responsibility of this crate is returning the current on/off state of all the (up to) 12 pins.
//!
//! The chip's data sheet can be found [here](https://www.nxp.com/docs/en/data-sheet/MPR121.pdf). The implementation however mostly mirrors the Adafruit implementation,
//! since this is probably the most widely used one.
//!
#![deny(
unsafe_code,
warnings
)]
#![no_std]
extern crate embedded_hal as hal;
use core::marker::PhantomData;
use embedded_hal::blocking::i2c::{Write, WriteRead};
const TOUCHSTATUS_L: u8 = 0x00;
//const TOUCHSTATUS_H: u8 = 0x01;
const FILTDATA_0L: u8 = 0x04;
//const FILTDATA_0H: u8 = 0x05;
const BASELINE_0: u8 = 0x1E;
const MHDR: u8 = 0x2B;
const NHDR: u8 = 0x2C;
const NCLR: u8 = 0x2D;
const FDLR: u8 = 0x2E;
const MHDF: u8 = 0x2F;
const NHDF: u8 = 0x30;
const NCLF: u8 = 0x31;
const FDLF: u8 = 0x32;
const NHDT: u8 = 0x33;
const NCLT: u8 = 0x34;
const FDLT: u8 = 0x35;
const TOUCHTH_0: u8 = 0x41;
const RELEASETH_0: u8 = 0x42;
const DEBOUNCE: u8 = 0x5B;
const CONFIG1: u8 = 0x5C;
const CONFIG2: u8 = 0x5D;
//const CHARGECURR_0: u8 = 0x5F;
//const CHARGETIME_1: u8 = 0x6C;
const ECR: u8 = 0x5E;
const AUTOCONFIG0: u8 = 0x7B;
//const AUTOCONFIG1: u8 = 0x7C;
const UPLIMIT: u8 = 0x7D;
const LOWLIMIT: u8 = 0x7E;
const TARGETLIMIT: u8 = 0x7F;
//const GPIODIR: u8 = 0x76;
//const GPIOEN: u8 = 0x77;
//const GPIOSET: u8 = 0x78;
//const GPIOCLR: u8 = 0x79;
//const GPIOTOGGLE: u8 = 0x7A;
const SOFTRESET: u8 = 0x80;
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd, Eq, Ord)]
pub enum Mpr121Error{
///If an operation exceeds the channel count (typically 12).
ChannelExceed,
///If a read operation failed, contains the address that failed.
ReadError(u8),
///If a write operation failed, contains the address that failed.
WriteError(u8),
///If sending the reset signal failed, contains the register that failed.
ResetFailed{
was_read: bool,
reg: u8
},
///If the reset did not happen as expected
InitFailed,
}
///The four values the sensor can be addressed as. Note that the address of the device is determined by
/// where the `ADDR` pin is connected to. Default is used if no connection, or a connection to `VSS` is made.
///
/// Have a look at page 4 "serial communication" for further specification.
#[repr(u8)]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum Mpr121Address{
Default = 0x5a,
Vdd = 0x5b,
Sda = 0x5c,
Scl = 0x5d
}
///Version of the Mpr121 driver that does not occupy the I2C bus. Instead the bus hat to be provided every time
/// an action is done.
///
/// # Safety
///
/// Assumes that the supplied I²C bus is always connected to the same mpr121. If you can't guarantee that, consider using the owning [Mpr121](Mpr121) version instead.
pub struct Mpr121Busless<I2C: Write + WriteRead>{
i2c: PhantomData<I2C>,
addr: Mpr121Address,
}
impl<I2C: Write + WriteRead> Mpr121Busless<I2C> {
pub const DEFAULT_TOUCH_THRESHOLD: u8 = 12;
pub const DEFAULT_RELEASE_THRESOLD: u8 = 6;
///Creates the driver for the given I²C ports. Assumes that the I²C port is configured as master.
/// If `use_auto_config` is set, the controller will use its auto configuration routine to setup
/// charging parameters whenever it is transitioned from STOP to START mode.
///
/// Note that we use the same default values as the Adafruit implementation, except for threshold values.
/// Use [set_thresholds](Self::set_thresholds) to define those.
pub fn new(i2c: &mut I2C, addr: Mpr121Address, use_auto_config: bool) -> Result<Self, Mpr121Error> {
let dev = Mpr121Busless {
i2c: PhantomData,
addr,
};
//reset
dev.write_register(i2c, SOFTRESET, 0x63).map_err(
|e| match e{
Mpr121Error::ReadError(reg) => Mpr121Error::ResetFailed { was_read: true, reg },
Mpr121Error::WriteError(reg) => Mpr121Error::ResetFailed{was_read: false, reg },
_ => Mpr121Error::ResetFailed{was_read: false, reg: 0xff}
}
)?;
//Stop
dev.write_register(i2c, ECR, 0x0)?;
//read config register
let config = dev.read_reg8(i2c, CONFIG2)?;
//Check if it is 0x24, which it should be according to the specification.
// Otherwise bail.
if config != 0x24{
return Err(Mpr121Error::InitFailed);
}
//Initialise the device to the similar settings as Adafruit
dev.set_thresholds(i2c, Self::DEFAULT_TOUCH_THRESHOLD, Self::DEFAULT_RELEASE_THRESOLD);
//Setup Filters MHD==MaximumHalfDelta, NHD=NoiseHalfDelta
// Have a look at 5.5 in the data sheet for more information.
dev.write_register(i2c, MHDR, 0x01)?;
dev.write_register(i2c, NHDR, 0x01)?;
dev.write_register(i2c, NCLR, 0x0e)?;
dev.write_register(i2c, FDLR, 0x00)?;
dev.write_register(i2c, MHDF, 0x01)?;
dev.write_register(i2c, NHDF, 0x05)?;
dev.write_register(i2c, NCLF, 0x01)?;
dev.write_register(i2c, FDLF, 0x00)?;
dev.write_register(i2c, NHDT, 0x00)?;
dev.write_register(i2c, NCLT, 0x00)?;
dev.write_register(i2c, FDLT, 0x00)?;
dev.write_register(i2c, DEBOUNCE, 0x0)?;
dev.write_register(i2c, CONFIG1, 0x10)?;
dev.write_register(i2c, CONFIG2, 0x20)?;
if use_auto_config{
dev.write_register(i2c, AUTOCONFIG0, 0x0b)?;
//Use 3.3V VDD
dev.write_register(i2c, UPLIMIT, 200)?; // = ((Vdd - 0.7)/Vdd) * 256;
dev.write_register(i2c, TARGETLIMIT, 180)?; // = UPLIMIT * 0.9
dev.write_register(i2c, LOWLIMIT, 130)?; // = UPLIMIT * 0.65
}
//enable electrodes and return to start mode
let ecr_setting = 0b10000000 + 12; // enable all 12 electrodes
dev.write_register(i2c, ECR, ecr_setting)?;
Ok(dev)
}
///Initializes the driver assuming the sensors address is the default one (0x5a).
/// If this fails, consider searching for the driver.
/// Or following the documentation on setting a driver address, and use [new](Self::new) to specify the address.
///
/// Have a look at [new](Self::new) for further documentation.
pub fn new_default(i2c: &mut I2C) -> Result<Self, Mpr121Error> {
Self::new(i2c, Mpr121Address::Default, false)
}
///Set the touch and release threshold for all channels. Usually the touch threshold is a little bigger than the release
/// threshold. This creates some debounce characteristics. The correct thresholds depend on the application.
///
/// Have a look at [note AN3892]() of the mpr121 guidelines.
pub fn set_thresholds(&self, i2c: &mut I2C, touch: u8, release: u8){
for i in 0..12{
//Note ignoring false set thresholds
let _ = self.write_register(i2c, TOUCHTH_0 + 2 * i, touch);
let _ = self.write_register(i2c, RELEASETH_0 + 2 * i, release);
}
}
///Sets the count for both touch and release. See 5.7 of the data sheet.
///
/// value must be 0..8, is clamped if it exceeds.
pub fn set_debounce(&self, i2c: &mut I2C, debounce_count: u8){
let debounce = debounce_count.min(7);
let bits = (debounce << 4) | (debounce);
let _ = self.write_register(i2c, DEBOUNCE, bits);
}
///Reads the filtered data form channel t. Noise gets filtered out by the
/// chip. See 5.3 in the data sheet.
///
/// Note that the resulting value is only 10bit wide.
///
/// Note that 0 is returned, if `channel > 12`.
pub fn get_filtered(&self, i2c: &mut I2C, channel: u8) -> Result<u16, Mpr121Error>{
if channel > 12{
return Err(Mpr121Error::ChannelExceed);
}
self.read_reg16(i2c, FILTDATA_0L + channel * 2)
}
///Reads the baseline data for the channel. Note that this has only a resolution of 8bit.
///
/// Note that 0 is returned, if `channel > 12`, or reading failed
pub fn get_baseline(&self, i2c: &mut I2C, channel: u8) -> Result<u8, Mpr121Error>{
if channel > 12{
return Err(Mpr121Error::ChannelExceed);
}
//NOTE: the original reads a 8bit value and left shifts 2bit.
// While the shift is correct the data sheet mentions:
//
// Although internally the baseline value is 10-bit,
// users can only access the 8 MSB of the 10-bit baseline value through the
// baseline value registers. The read out from the baseline register must
// be left shift two bits before comparing it with the 10-bit
// electrode data.
//
// reading only 8bit and shifting 2bit effectively reduces the resolution to
// 6bit, since we loose the 2MSB.
//
// Therefore we read 16bit, mask out the top 6, and then shift
let value = self.read_reg16(i2c, BASELINE_0 + channel)? & 0b00000011_11111100;
let cast = (value << 2).try_into().unwrap_or(0);
Ok(cast)
}
///Reads the *touched* state of all channels. Returns a u16 where each bit 0..12 indicates whether the
/// pin is touched or not. Use bit shifting / masking to generate a mask, or, if only one sensor's value is
/// needed, use [get_touch_state](Self::get_sensor_touch).
///
/// Returns 0 if reading failed.
pub fn get_touched(&self, i2c: &mut I2C) -> Result<u16, Mpr121Error>{
//mask upper four bits returns the rest
let unmasked = self.read_reg16(i2c, TOUCHSTATUS_L)?;
Ok(unmasked & 0x0fff)
}
///Returns the touch state of the given sensor.
///
/// Returns false if `channel>11`, or reading failed.
pub fn get_sensor_touch(&self, i2c: &mut I2C, channel: u8) -> bool{
if channel>11{
return false;
}
//Masks all bits except for our channel, then returns true if the bit is set
self.get_touched(i2c).unwrap_or(0) & (1 << channel) > 0
}
//Write implementation. Returns an error if a read or write operation failed. The error contains the failing register.
fn write_register(&self, i2c: &mut I2C, reg: u8, value: u8) -> Result<(), Mpr121Error>{
//MPR121 must be in Stop mode for most reg writes. This is not true for all, but
// we are conservative here.
let mut stop_required = true;
//ECR and 0x73..0x71 don't need stop. makes this a bit faster
if reg == ECR || (0x73 <= reg && reg <= 0x7a){
stop_required = false;
}
//Check in which mode we are by reading ECR.
let ecr_state = self.read_reg8(i2c, ECR)?;
if stop_required{
//set to stop
i2c.write(self.addr as u8, &[ECR, 0x00]).map_err(|_| Mpr121Error::WriteError(ECR))?;
}
//actual write
i2c.write(self.addr as u8, &[reg, value]).map_err(|_| Mpr121Error::WriteError(reg))?;
//reset to old ecr state
if stop_required{
i2c.write(self.addr as u8, &[ECR, ecr_state]).map_err(|_| Mpr121Error::WriteError(ECR))?;
}
Ok(())
}
//Reads the value, returns Err, if reading failed.
fn read_reg8(&self, i2c: &mut I2C, reg: u8) -> Result<u8, Mpr121Error>{
let mut val = [0u8];
if let Err(_) = i2c.write_read(self.addr as u8, &[reg], val.as_mut_slice()){
return Err(Mpr121Error::ReadError(reg));
}
Ok(val[0])
}
//Reads the value, returns Err, if reading failed.
fn read_reg16(&self, i2c: &mut I2C, reg: u8) -> Result<u16, Mpr121Error>{
let mut val = [0u8, 0u8];
if let Err(_) = i2c.write_read(self.addr as u8, &[reg], &mut val){
return Err(Mpr121Error::ReadError(reg));
}
Ok(u16::from_le_bytes(val))
}
}
///I2C connected Mpr121. Use either [new_default](Self::new_default) or [new](Self::new) to create a new instance.
///
/// If you want to collect the I²C bus upon drop, use [free](Self::free), which deconstructs `Self`.
pub struct Mpr121<I2C: Write + WriteRead> {
i2c: I2C,
busless: Mpr121Busless<I2C>,
}
impl<I2C: Write + WriteRead> Mpr121<I2C>{
///Creates the driver for the given I²C ports. Assumes that the I²C port is configured as master.
/// If `use_auto_config` is set, the controller will use its auto configuration routine to setup
/// charging parameters whenever it is transitioned from STOP to START mode.
///
/// Note that we use the same default values as the Adafruit implementation, except for threshold values.
/// Use [set_thresholds](Self::set_thresholds) to define those.
pub fn new(mut i2c: I2C, addr: Mpr121Address, use_auto_config: bool) -> Result<Self, Mpr121Error> {
let busless = Mpr121Busless::new(&mut i2c, addr, use_auto_config)?;
Ok(Mpr121 {
i2c,
busless,
})
}
///Initializes the driver assuming the sensors address is the default one (0x5a).
/// If this fails, consider searching for the driver.
/// Or following the documentation on setting a driver address, and use [new](Self::new) to specify the address.
///
/// Have a look at [new](Self::new) for further documentation.
pub fn new_default(i2c: I2C) -> Result<Self, Mpr121Error> {
Self::new(i2c, Mpr121Address::Default, false)
}
///Set the touch and release threshold for all channels. Usually the touch threshold is a little bigger than the release
/// threshold. This creates some debounce characteristics. The correct thresholds depend on the application.
///
/// Have a look at [note AN3892]() of the mpr121 guidelines.
pub fn set_thresholds(&mut self, touch: u8, release: u8){
self.busless.set_thresholds(&mut self.i2c, touch, release)
}
///Sets the count for both touch and release. See 5.7 of the data sheet.
///
/// value must be 0..8, is clamped if it exceeds.
pub fn set_debounce(&mut self, debounce_count: u8){
self.busless.set_debounce(&mut self.i2c, debounce_count)
}
///Reads the filtered data form channel t. Noise gets filtered out by the
/// chip. See 5.3 in the data sheet.
///
/// Note that the resulting value is only 10bit wide.
///
/// Note that 0 is returned, if `channel > 12`.
pub fn get_filtered(&mut self, channel: u8) -> Result<u16, Mpr121Error>{
self.busless.get_filtered(&mut self.i2c, channel)
}
///Reads the baseline data for the channel. Note that this has only a resolution of 8bit.
///
/// Note that 0 is returned, if `channel > 12`, or reading failed
pub fn get_baseline(&mut self, channel: u8) -> Result<u8, Mpr121Error>{
self.busless.get_baseline(&mut self.i2c, channel)
}
///Reads the *touched* state of all channels. Returns a u16 where each bit 0..12 indicates whether the
/// pin is touched or not. Use bit shifting / masking to generate a mask, or, if only one sensor's value is
/// needed, use [get_touch_state](Self::get_sensor_touch).
///
/// Returns 0 if reading failed.
pub fn get_touched(&mut self) -> Result<u16, Mpr121Error>{
self.busless.get_touched(&mut self.i2c)
}
///Returns the touch state of the given sensor.
///
/// Returns false if `channel>11`, or reading failed.
pub fn get_sensor_touch(&mut self, channel: u8) -> bool{
self.busless.get_sensor_touch(&mut self.i2c, channel)
}
///Consumes `self` and releases the i2c bus that is used.
pub fn free(self) -> I2C{
self.i2c
}
}
#[cfg(test)]
mod tests {
#[test]
fn it_works() {
unimplemented!()
}
}