1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#![feature(test)]
extern crate rand;
extern crate test;

// http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
#[inline]
pub fn interleave_morton(x: u32, y: u32) -> u32 {
    // x and y should be smaller then 16 bits otherwise it will overflow 32 bits when interleaved
    debug_assert!(x < 65536 && y < 65536, "overflow catched: x:{} < 65536, y:{} < 65536", x, y);
    let x = (x | (x << 8)) & 0x00FF00FF;
    let x = (x | (x << 4)) & 0x0F0F0F0F;
    let x = (x | (x << 2)) & 0x33333333;
    let x = (x | (x << 1)) & 0x55555555;

    let y = (y | (y << 8)) & 0x00FF00FF;
    let y = (y | (y << 4)) & 0x0F0F0F0F;
    let y = (y | (y << 2)) & 0x33333333;
    let y = (y | (y << 1)) & 0x55555555;

    let z = x | (y << 1);
    z
}

// http://stackoverflow.com/questions/4909263/how-to-efficiently-de-interleave-bits-inverse-morton
#[inline]
pub fn deinterleave_morton(z: u32) -> (u32, u32) {
      let x = z & 0x55555555;
      let x = (x | (x >> 1)) & 0x33333333;
      let x = (x | (x >> 2)) & 0x0F0F0F0F;
      let x = (x | (x >> 4)) & 0x00FF00FF;
      let x = (x | (x >> 8)) & 0x0000FFFF;

      let y = (z >> 1) & 0x55555555;
      let y = (y | (y >> 1)) & 0x33333333;
      let y = (y | (y >> 2)) & 0x0F0F0F0F;
      let y = (y | (y >> 4)) & 0x00FF00FF;
      let y = (y | (y >> 8)) & 0x0000FFFF;

      (x,y)
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand;
    use rand::Rng;
    use test::Bencher;

    fn idx_tile(x: usize, y: usize, stride: usize) -> usize { stride * y + x }
    fn idx_tile_tuple(xy: (u32,u32), stride: u32) -> u32 { let (x,y) = xy; stride * y + x }

    #[test]
    fn test_interleave() {
        let mut rng_xor = rand::weak_rng();

        let mut tile_morton = [0;32*32]; // 1024 locations
        let mut tile_normal = [0;32*32]; // 1024 locations
        // fill tiles with same random numbers
        for x in 0..32 {
            for y in 0..32 {
                let random = rng_xor.next_u32();
                tile_morton[interleave_morton(x as u32, y as u32) as usize] = random;
                tile_normal[idx_tile(x, y, 32)] = random;
            }
        }

        // check that the same random numbers are stored there
        // (morton curve did not override it's own elements)
        for x in 0..32 {
            for y in 0..32 {
                let morton = tile_morton[interleave_morton(x as u32, y as u32) as usize];
                let normal = tile_normal[idx_tile(x, y, 32)];
                assert!(morton == normal);
            }
        }
    }
    #[test]
    fn test_deinterleave() {
        let mut rng_xor = rand::weak_rng();

        let mut tile_morton = [0;32*32]; // 1024 locations
        let mut tile_normal = [0;32*32]; // 1024 locations

        // fill tiles with same random numbers
        for x in 0..32 {
            for y in 0..32 {
                let random = rng_xor.next_u32();
                tile_morton[interleave_morton(x as u32, y as u32) as usize] = random;
                tile_normal[idx_tile(x, y, 32)] = random;
            }
        }

        // check that the same random numbers are stored there
        // (morton curve did not override it's own elements)
        for z in 0..1024 {
            let morton = tile_morton[z];
            let normal = tile_normal[idx_tile_tuple(deinterleave_morton(z as u32), 32) as usize];
            assert!(morton == normal);
        }
    }
    #[test]
    fn deinterleave_interleave() {
        for z in 0..65536 {
            let (x,y) = deinterleave_morton(z);
            let morton = interleave_morton(x,y);
            assert!(morton == z);
        }
    }
    #[test]
    fn interleave_deinterleave() {
        for x in 0..1024 {
            for y in 0..1024 {
                let morton = interleave_morton(x,y);
                let (d_x,d_y) = deinterleave_morton(morton);
                assert!(d_x == x && d_y == y);
            }
        }
    }

    // tests with random input
    #[test]
    fn rand_interleave_deinterleave_1000() {
        let mut rng_xor = rand::weak_rng();
        for _ in 0..1024 {
            let x = rng_xor.gen_range(0,65536);
            let y = rng_xor.gen_range(0,65536);
            let morton = interleave_morton(x,y);
            let (d_x,d_y) = deinterleave_morton(morton);
            assert!(d_x == x && d_y == y);
        }
    }
    #[test]
    fn rand_deinterleave_interleave_1000() {
        let mut rng_xor = rand::weak_rng();
        for _ in 0..1024 {
            let z = rng_xor.next_u32();
            let (x,y) = deinterleave_morton(z);
            let morton = interleave_morton(x,y);
            assert!(morton == z);
        }
    }

    // benchmarks
    #[bench]
    fn bench_interleave_1000(b: &mut Bencher) {
        let mut rng_xor = rand::weak_rng();
        let x = rng_xor.gen_range(0,65536);
        let y = rng_xor.gen_range(0,65536);
        let n = test::black_box(1000);
        b.iter(|| for _ in 0..n { test::black_box(interleave_morton(x, y)); });
    }
    #[bench]
    fn bench_deinterleave_1000(b: &mut Bencher) {
        let mut rng_xor = rand::weak_rng();
        let random = rng_xor.next_u32();
        let n = test::black_box(1000);
        b.iter(|| for _ in 0..n { test::black_box(deinterleave_morton(random)); });
    }
    #[bench]
    fn bench_interleave_deinterleave_1000(b: &mut Bencher) {
        let mut rng_xor = rand::weak_rng();
        let x = rng_xor.gen_range(0,65536);
        let y = rng_xor.gen_range(0,65536);
        let n = test::black_box(1000);
        b.iter(|| for _ in 0..n { test::black_box(deinterleave_morton(interleave_morton(x, y))); });
    }
    #[bench]
    fn bench_deinterleave_interleave_1000(b: &mut Bencher) {
        let mut rng_xor = rand::weak_rng();
        let random = rng_xor.next_u32();
        let n = test::black_box(1000);
        b.iter(|| for _ in 0..n {
            let (x,y) = deinterleave_morton(random);
            test::black_box(interleave_morton(x,y));
        });
    }

    #[bench]
    fn bench_horizontal_access_normal(b: &mut Bencher) {
        let mut rng_xor = rand::weak_rng();
        let mut tile_normal = vec![0;2048*2048]; // 16MB allocate more then largest cache
        // fill tiles with same random numbers
        for y in 0..2048 {
            for x in 0..2048 {
                let random = rng_xor.next_u32();
                tile_normal[idx_tile(x, y, 2048)] = random;
            }
        }
        // bench horizontal access (x direction)
        b.iter(|| {
            for y in 0..2048 {
                for x in 0..2048 {
                    test::black_box(tile_normal[idx_tile(x, y, 2048)]);
                }
            }
        });
    }
    #[bench]
    fn bench_vertical_access_normal(b: &mut Bencher) {
        let mut rng_xor = rand::weak_rng();
        let mut tile_normal = vec![0;2048*2048]; // 16MB allocate more then largest cache
        // fill tiles with same random numbers
        for x in 0..2048 {
            for y in 0..2048 {
                let random = rng_xor.next_u32();
                tile_normal[idx_tile(x, y, 2048)] = random;
            }
        }
        // bench vertical access (y direction)
        b.iter(|| {
            for x in 0..2048 {
                for y in 0..2048 {
                    test::black_box(tile_normal[idx_tile(x, y, 2048) as usize]);
                }
            }
        });
    }
    #[bench]
    fn bench_morton_access_normal(b: &mut Bencher) {
        let mut rng_xor = rand::weak_rng();
        let mut tile_morton = vec![0;2048*2048]; // 16MB allocate more then largest cache
        // fill tiles with same random numbers
        for z in 0..2048*2048 {
            let random = rng_xor.next_u32();
            tile_morton[idx_tile_tuple(deinterleave_morton(z), 2048) as usize] = random;
        }
        // bench horizontal access (x direction)
        b.iter(|| {
            for z in 0..2048*2048 {
                test::black_box(tile_morton[idx_tile_tuple(deinterleave_morton(z), 2048) as usize]);
            }
        });
    }
    #[bench]
    fn bench_horizontal_access_morton(b: &mut Bencher) {
        let mut rng_xor = rand::weak_rng();
        let mut tile_morton = vec![0;2048*2048]; // 16MB allocate more then largest cache
        // fill tiles with same random numbers
        for y in 0..2048 {
            for x in 0..2048 {
                let random = rng_xor.next_u32();
                tile_morton[interleave_morton(x, y) as usize] = random;
            }
        }
        // bench horizontal access (x direction)
        b.iter(|| {
            for y in 0..2048 {
                for x in 0..2048 {
                    test::black_box(tile_morton[interleave_morton(x,y) as usize]);
                }
            }
        });
    }
    #[bench]
    fn bench_vertical_access_morton(b: &mut Bencher) {
        let mut rng_xor = rand::weak_rng();
        let mut tile_morton = vec![0;2048*2048]; // 16MB allocate more then largest cache
        // fill tiles with same random numbers
        for x in 0..2048 {
            for y in 0..2048 {
                let random = rng_xor.next_u32();
                tile_morton[interleave_morton(x, y) as usize] = random;
            }
        }
        // bench vertical access (y direction)
        b.iter(|| {
            for x in 0..2048 {
                for y in 0..2048 {
                    test::black_box(tile_morton[interleave_morton(x,y) as usize]);
                }
            }
        });
    }
    #[bench]
    fn bench_morton_access_morton(b: &mut Bencher) {
        let mut rng_xor = rand::weak_rng();
        let mut tile_morton = vec![0;2048*2048]; // 16MB allocate more then largest cache
        // fill tiles with same random numbers
        for z in 0..2048*2048 {
            let random = rng_xor.next_u32();
            tile_morton[z] = random;
        }
        // bench horizontal access (x direction)
        b.iter(|| {
            for z in 0..2048*2048 {
                test::black_box(tile_morton[z]);
            }
        });
    }
}