mm0b_parser 0.1.4

parsing tools for Metamath Zero's MMB binary format
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
#[allow(clippy::wildcard_imports)]
use crate::cmd::*;
use crate::{
  Arg, HasSymbolNames, Header, MmbFile, NameEntryRef, ProofCmd, SortData, TableEntry, TermEntry,
  ThmEntry, UnifyCmd,
};
use byteorder::{WriteBytesExt, LE};
use mm0_util::{u32_as_usize, SortId, SortVec, TermId, TermVec, ThmId, ThmVec};
use std::convert::{TryFrom, TryInto};
use std::io::{self, Cursor, Read, Write};
use zerocopy::{AsBytes, U32};

/// Encode the command `cmd` (one of the `STMT_*`, `PROOF_*` or `UNIFY_*` commands
/// in this module, which are all 6 bit numbers) with the given `data` field
/// according to the following scheme:
///
///   * `cmd | 0x00` for `data = 0`
///   * `cmd | 0x40, data:u8` for 8 bit `data`
///   * `cmd | 0x80, data:u16` for 16 bit `data`
///   * `cmd | 0xC0, data:u32` for 32 bit `data`
///
/// where we select the shortest available encoding given the value of `data`.
pub fn write_cmd(w: &mut impl Write, cmd: u8, data: u32) -> io::Result<()> {
  if data == 0 {
    w.write_u8(cmd)
  } else if let Ok(data) = data.try_into() {
    w.write_u8(cmd | DATA_8)?;
    w.write_u8(data)
  } else if let Ok(data) = data.try_into() {
    w.write_u8(cmd | DATA_16)?;
    w.write_u16::<LE>(data)
  } else {
    w.write_u8(cmd | DATA_32)?;
    w.write_u32::<LE>(data)
  }
}

/// This is like [`write_cmd`], but it is followed by
/// the byte array `buf`, and the initial `data` field is the length of the entire
/// expression (the initial command byte, the `data` field, and the buffer).
/// This can't be expressed with `write_cmd` directly because of the circular
/// dependency where the value of `data` determines the size of the initial command,
/// which affects the value of `data`.
pub fn write_cmd_bytes(w: &mut impl Write, cmd: u8, buf: &[u8]) -> io::Result<()> {
  if let Ok(data) = (buf.len() + 2).try_into() {
    w.write_u8(cmd | DATA_8)?;
    w.write_u8(data)?;
    w.write_all(buf)
  } else if let Ok(data) = (buf.len() + 3).try_into() {
    w.write_u8(cmd | DATA_16)?;
    w.write_u16::<LE>(data)?;
    w.write_all(buf)
  } else {
    w.write_u8(cmd | DATA_32)?;
    w.write_u32::<LE>((buf.len() + 5).try_into().expect("too large for format"))?;
    w.write_all(buf)
  }
}

impl UnifyCmd {
  /// Serialize a [`UnifyCmd`] to the given writer. Uses the `UNIFY_*` commands in
  /// [`mmb::export::cmd`](super::cmd).
  #[inline]
  pub fn write_to(self, w: &mut impl Write) -> io::Result<()> {
    match self {
      UnifyCmd::Term { tid, save } =>
        write_cmd(w, if save { UNIFY_TERM_SAVE } else { UNIFY_TERM }, tid.0),
      UnifyCmd::Ref(n) => write_cmd(w, UNIFY_REF, n),
      UnifyCmd::Dummy(sid) => write_cmd(w, UNIFY_DUMMY, sid.0.into()),
      UnifyCmd::Hyp => w.write_u8(UNIFY_HYP),
    }
  }
}

impl ProofCmd {
  /// Serialize a [`ProofCmd`] to the given writer. Uses the `PROOF_*` commands in
  /// [`mmb::export::cmd`](super::cmd).
  #[inline]
  pub fn write_to(self, w: &mut impl Write) -> io::Result<()> {
    match self {
      ProofCmd::Term { tid, save } =>
        write_cmd(w, if save { PROOF_TERM_SAVE } else { PROOF_TERM }, tid.0),
      ProofCmd::Ref(n) => write_cmd(w, PROOF_REF, n),
      ProofCmd::Dummy(sid) => write_cmd(w, PROOF_DUMMY, sid.0.into()),
      ProofCmd::Thm { tid, save } =>
        write_cmd(w, if save { PROOF_THM_SAVE } else { PROOF_THM }, tid.0),
      ProofCmd::Hyp => w.write_u8(PROOF_HYP),
      ProofCmd::Conv => w.write_u8(PROOF_CONV),
      ProofCmd::Refl => w.write_u8(PROOF_REFL),
      ProofCmd::Sym => w.write_u8(PROOF_SYMM),
      ProofCmd::Cong => w.write_u8(PROOF_CONG),
      ProofCmd::Unfold => w.write_u8(PROOF_UNFOLD),
      ProofCmd::ConvCut => w.write_u8(PROOF_CONV_CUT),
      ProofCmd::ConvSave => w.write_u8(PROOF_CONV_SAVE),
      ProofCmd::Save => w.write_u8(PROOF_SAVE),
      ProofCmd::Sorry => w.write_u8(PROOF_SORRY),
    }
  }
}

/// An implementation of `Reopen` is a writer that can be closed and reopened to read what was just
/// written.
pub trait Reopen: Write {
  /// The type returned by `reopen`, which must implement `Read`.
  type Reopened: Read;
  /// Consume this writer and reopen it as another type `Self::Reopened`, which supports reading to
  /// read what was just written.
  fn reopen(self) -> io::Result<Self::Reopened>;
}

impl Reopen for Vec<u8> {
  type Reopened = Cursor<Self>;
  fn reopen(self) -> io::Result<Self::Reopened> { Ok(Cursor::new(self)) }
}

#[derive(Debug)]
struct TrackSize<W>(W, usize);

impl<W: Write> Write for TrackSize<W> {
  fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
    let n = self.0.write(buf)?;
    self.1 += n;
    Ok(n)
  }

  fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
    self.0.write_all(buf)?;
    self.1 += buf.len();
    Ok(())
  }

  fn flush(&mut self) -> io::Result<()> { self.0.flush() }
}

/// An `Mm0Writer` is a buffer for constructing an MMB file when the total number of
/// sorts/terms/theorems is not yet known. It renders as much of the file as it can, so that the
/// actual file write consists mostly of `memcpy`s.
///
/// The proof stream is handled separately, since it is much larger than the other parts.
/// The provided writer `W` must implement the `Reopen` trait, which allows it to be written to and
/// then reopened and read back into the target file.
#[derive(Debug)]
#[must_use = "dropping an Mm0Writer will not produce an MMB file"]
pub struct Mm0Writer<W> {
  sorts: SortVec<SortData>,
  terms: TermVec<TermEntry>,
  thms: ThmVec<ThmEntry>,
  term_thm_buf: Vec<u8>,
  proof: TrackSize<W>,
  names_buf: Vec<u8>,
  sort_names: SortVec<(usize, usize)>,
  term_names: TermVec<(usize, usize)>,
  thm_names: ThmVec<(usize, usize)>,
}

fn push_name(buf: &mut Vec<u8>, name: Option<&str>) -> usize {
  if let Some(name) = name {
    let n = buf.len();
    let s = name.as_bytes();
    assert!(memchr::memchr(0, s).is_none());
    buf.extend_from_slice(s);
    buf.push(0);
    n
  } else {
    usize::MAX
  }
}

fn pad_to(pos: usize, n: u8) -> (usize, usize) {
  #[allow(clippy::cast_possible_truncation)] // actual truncation
  let i = (n.wrapping_sub(pos as u8) & (n - 1)).into();
  (i, pos + i)
}

impl<W: Reopen> Mm0Writer<W> {
  /// Create a new empty `Mm0Writer`. Takes as input a writer for the proof component
  /// (which is typically larger than the other components, and can be set to a temporary file or
  /// an in-memory buffer).
  pub fn new(proof: W) -> Mm0Writer<W> {
    Mm0Writer {
      sorts: Default::default(),
      terms: Default::default(),
      thms: Default::default(),
      term_thm_buf: Default::default(),
      proof: TrackSize(proof, 0),
      names_buf: Default::default(),
      sort_names: Default::default(),
      term_names: Default::default(),
      thm_names: Default::default(),
    }
  }

  /// Initialize an MMB writer with the entire contents of another MMB file.
  /// Requires that the writer is newly initialized, i.e. has no sorts/terms/thms declared yet.
  /// Performs only limited checks on the input file, i.e. a malformed input will cause this writer
  /// to produce a malformed output or possibly panic.
  pub fn init<'a, X: HasSymbolNames<'a>>(&mut self, mmb: &MmbFile<'a, X>) -> io::Result<()> {
    assert!(self.sorts.is_empty() && self.terms.is_empty() && self.thms.is_empty());
    self.sorts.extend_from_slice(mmb.sorts);
    self.terms.extend_from_slice(mmb.terms);
    self.thms.extend_from_slice(mmb.thms);
    let off = u64::from(mmb.header.p_proof.get());
    let push_entry = move |buf: &mut Vec<u8>, entry: Option<NameEntryRef<'_>>| {
      if let Some(entry) = entry {
        let n = buf.len();
        let zero = memchr::memchr(0, entry.value).expect("missing end");
        buf.extend_from_slice(&entry.value[..=zero]);
        ((entry.p_proof.get() - off).try_into().expect("overflow"), n)
      } else {
        (usize::MAX, usize::MAX)
      }
    };
    for (id, _) in self.sorts.enum_iter() {
      self.sort_names.push(push_entry(&mut self.names_buf, mmb.sort_index(id)));
    }
    for (id, t) in self.terms.enum_iter_mut() {
      let start = u32_as_usize(t.p_args.get());
      let end = mmb.term(id).expect("impossible").unify().after_end().expect("parse error");
      t.p_args.set(self.term_thm_buf.len().try_into().expect("overflow"));
      self.term_thm_buf.extend_from_slice(&mmb.buf[start..end]);
      self.term_names.push(push_entry(&mut self.names_buf, mmb.term_index(id)));
    }
    for (id, t) in self.thms.enum_iter_mut() {
      let start = u32_as_usize(t.p_args.get());
      let end = mmb.thm(id).expect("impossible").unify().after_end().expect("parse error");
      t.p_args.set(self.term_thm_buf.len().try_into().expect("overflow"));
      self.term_thm_buf.extend_from_slice(&mmb.buf[start..end]);
      self.thm_names.push(push_entry(&mut self.names_buf, mmb.thm_index(id)));
    }
    let start = u32_as_usize(mmb.header.p_proof.get());
    let end = mmb.proof().after_end().expect("parse error");
    self.proof.write_all(&mmb.buf[start..end])
  }

  fn add_term_core(&mut self, name: Option<&str>, sort_def: u8, args: &[Arg], ret: Arg) -> TermId {
    let n = self.terms.push(TermEntry {
      num_args: args.len().try_into().expect("overflow"),
      sort: sort_def,
      reserved: 0,
      p_args: U32::new(self.term_thm_buf.len().try_into().expect("overflow")),
    });
    self.term_names.push((self.proof.1, push_name(&mut self.names_buf, name)));
    self.term_thm_buf.extend_from_slice(args.as_bytes());
    self.term_thm_buf.extend_from_slice(ret.as_bytes());
    n
  }

  /// Add a new sort with the given name and sort modifiers. Returns the ID of the new sort.
  pub fn add_sort(&mut self, name: Option<&str>, data: SortData) -> SortId {
    let n = self.sorts.push(data);
    self.sort_names.push((self.proof.1, push_name(&mut self.names_buf, name)));
    n
  }

  /// Add a new term with the given name and arguments. Returns the ID of the new term.
  pub fn add_term(&mut self, name: Option<&str>, args: &[Arg], ret: Arg) -> io::Result<TermId> {
    let n = self.add_term_core(name, ret.sort().0, args, ret);
    write_cmd_bytes(&mut self.proof, STMT_TERM, &[])?;
    Ok(n)
  }

  /// Begin construction of a new def with the given name and arguments.
  /// The returned `DefBuilder` contains references to the unify and proof streams, where the
  /// value of the definition should be inserted.
  pub fn add_def(
    &mut self, local: bool, name: Option<&str>, args: &[Arg], ret: Arg,
  ) -> DefBuilder<'_, W> {
    let n = self.add_term_core(name, ret.sort().0 | 1 << 7, args, ret);
    DefBuilder(StmtBuilder::new(self, if local { STMT_LOCAL_DEF } else { STMT_DEF }), n)
  }

  /// Begin construction of a new theorem or axiom with the given name and arguments.
  /// The returned `ThmBuilder` contains references to the unify and proof streams, where the
  /// statement and proof of the theorem should be inserted.
  fn add_thm_core(&mut self, cmd: u8, name: Option<&str>, args: &[Arg]) -> ThmBuilder<'_, W> {
    let n = self.thms.push(ThmEntry {
      num_args: args.len().try_into().expect("overflow"),
      reserved: [0; 2],
      p_args: U32::new(self.term_thm_buf.len().try_into().expect("overflow")),
    });
    self.term_names.push((self.proof.1, push_name(&mut self.names_buf, name)));
    self.term_thm_buf.extend_from_slice(args.as_bytes());
    ThmBuilder(StmtBuilder::new(self, cmd), n)
  }

  /// Begin construction of a new axiom with the given name and arguments.
  /// The returned `ThmBuilder` contains references to the unify and proof streams, where the
  /// statement of the axiom should be inserted.
  pub fn add_axiom(&mut self, name: Option<&str>, args: &[Arg]) -> ThmBuilder<'_, W> {
    self.add_thm_core(STMT_AXIOM, name, args)
  }

  /// Begin construction of a new theorem with the given name and arguments.
  /// The returned `ThmBuilder` contains references to the unify and proof streams, where the
  /// statement and proof of the theorem should be inserted.
  pub fn add_thm(&mut self, local: bool, name: Option<&str>, args: &[Arg]) -> ThmBuilder<'_, W> {
    self.add_thm_core(if local { STMT_LOCAL_THM } else { STMT_THM }, name, args)
  }

  /// This function consumes the `Mm0Writer` instance and actually writes the MMB data to the given
  /// writer, given a function `reopen` which reads the data just written to `proof`.
  pub fn finish(self, w: &mut impl Write) -> io::Result<()> {
    use std::mem::size_of;
    let Mm0Writer {
      sorts,
      mut terms,
      mut thms,
      term_thm_buf,
      mut proof,
      names_buf,
      sort_names,
      term_names,
      thm_names,
    } = self;
    proof.write_u8(0)?;
    let (mut proof, proof_size) = (proof.0.reopen()?, proof.1);
    let num_sorts = sorts.len();
    assert!(num_sorts <= 128, "too many sorts (max 128)");
    let num_terms = terms.len();
    let num_thms = thms.len();
    let (pad1, p_terms) = pad_to(size_of::<Header>() + num_sorts * size_of::<SortData>(), 8);
    let p_thms = p_terms + num_terms * size_of::<TermEntry>();
    let p_term_thm_buf = p_thms + num_thms * size_of::<ThmEntry>();
    let p_proof = p_term_thm_buf + term_thm_buf.len();
    let (pad2, p_index) = pad_to(p_proof + proof_size, 8);
    let p_proof = p_proof.try_into().expect("term section overflow");

    // adjust offsets
    for t in &mut terms.0 {
      #[allow(clippy::cast_possible_truncation)] // impossible because of previous check
      t.p_args.set(t.p_args.get() + p_term_thm_buf as u32)
    }
    for t in &mut thms.0 {
      #[allow(clippy::cast_possible_truncation)] // impossible because of previous check
      t.p_args.set(t.p_args.get() + p_term_thm_buf as u32)
    }

    // header
    w.write_all(&MM0B_MAGIC)?; // magic
    #[allow(clippy::cast_possible_truncation)] // impossible
    w.write_all(&[MM0B_VERSION, num_sorts as u8, 0, 0])?; // two bytes reserved
    w.write_u32::<LE>(num_terms.try_into().expect("too many terms"))?; // num_terms
    w.write_u32::<LE>(num_thms.try_into().expect("too many thms"))?; // num_thms
    #[allow(clippy::cast_possible_truncation)] // impossible
    w.write_u32::<LE>(p_terms as u32)?;
    w.write_u32::<LE>(p_thms.try_into().expect("too many terms"))?;
    w.write_u32::<LE>(p_proof)?;
    w.write_u32::<LE>(0)?;
    w.write_u64::<LE>(p_index.try_into().expect("overflow"))?;

    w.write_all(sorts.as_bytes())?; // sort data
    w.write_all(&vec![0; pad1])?; // term header padding
    w.write_all(terms.as_bytes())?; // term header
    w.write_all(thms.as_bytes())?; // theorem header
    w.write_all(&term_thm_buf)?; // term/theorem data
    io::copy(&mut proof, w)?; // proof stream

    let num_entries = 1;
    let p_names_buf = p_index + 8 + num_entries * size_of::<TableEntry>();
    let p_names = p_names_buf + names_buf.len();
    let p_names_buf: u64 = p_names_buf.try_into().expect("overflow");
    let index = [(INDEX_NAME, p_names)];
    assert_eq!(index.len(), num_entries);
    w.write_all(&vec![0; pad2])?; // index padding
    w.write_u64::<LE>(num_entries.try_into().expect("overflow"))?; // index size
    for (ty, p) in index {
      w.write_all(&ty)?; // type
      w.write_u32::<LE>(0)?; // data (padding, unused)
      w.write_u64::<LE>(p.try_into().expect("overflow"))?; // ptr
    }

    w.write_all(&names_buf)?; // name string data
    let p_proof = u64::from(p_proof);
    let mut write = |vec| -> io::Result<()> {
      let offset = |off, i| match i {
        usize::MAX => 0,
        _ => off + u64::try_from(i).unwrap(),
      };
      for (decl, name) in vec {
        w.write_u64::<LE>(offset(p_proof, decl))?;
        w.write_u64::<LE>(offset(p_names_buf, name))?;
      }
      Ok(())
    };
    write(sort_names.0)?; // sort name data
    write(term_names.0)?; // term name data
    write(thm_names.0)?; // thm name data
    Ok(())
  }
}

#[derive(Debug)]
#[must_use]
struct StmtBuilder<'a, W> {
  w: &'a mut Mm0Writer<W>,
  cmd: u8,
  buf: Vec<u8>,
}

impl<'a, W: Reopen> StmtBuilder<'a, W> {
  fn new(w: &'a mut Mm0Writer<W>, cmd: u8) -> Self { Self { w, cmd, buf: vec![] } }
  fn unify(&mut self) -> &mut impl Write { &mut self.w.term_thm_buf }
  fn proof(&mut self) -> &mut impl Write { &mut self.buf }
  fn finish(self) -> io::Result<()> { write_cmd_bytes(&mut self.w.proof, self.cmd, &self.buf) }
}

/// An unfinished definition. The `unify` and `proof` streams should be used to write unify and
/// proof commands, respectively, and when completed the `finish` function will finalize the
/// streams and return the `TermId` of the new definition.
#[derive(Debug)]
#[must_use = "discarding a DefBuilder will result in a corrupted file"]
pub struct DefBuilder<'a, W>(StmtBuilder<'a, W>, TermId);

impl<'a, W: Reopen> DefBuilder<'a, W> {
  /// A reference to the unify stream for this definition. Use [`UnifyCmd::write_to`] to add
  /// commands to this stream. Do not add an `END` command at the end; [`finish`] will handle that.
  pub fn unify(&mut self) -> &mut impl Write { self.0.unify() }

  /// A reference to the proof stream for this definition. Use [`ProofCmd::write_to`] to add
  /// commands to this stream. Do not add an `END` command at the end; [`finish`] will handle that.
  pub fn proof(&mut self) -> &mut impl Write { self.0.proof() }

  /// Finish the unify and proof streams for this definition, and finalize the term addition.
  /// Returns the ID of the newly created term.
  pub fn finish(mut self) -> io::Result<TermId> {
    self.unify().write_u8(0)?;
    self.proof().write_u8(0)?;
    self.0.finish()?;
    Ok(self.1)
  }
}

/// An unfinished axiom or theorem. The `unify` and `proof` streams should be used to write unify
/// and proof commands, respectively, and when completed the `finish` function will finalize the
/// streams and return the `ThmId` of the new theorem.
#[derive(Debug)]
#[must_use = "discarding a ThmBuilder will result in a corrupted file"]
pub struct ThmBuilder<'a, W>(StmtBuilder<'a, W>, ThmId);

impl<'a, W: Reopen> ThmBuilder<'a, W> {
  /// A reference to the unify stream for this theorem. Use [`UnifyCmd::write_to`] to add
  /// commands to this stream. Do not add an `END` command at the end; [`finish`] will handle that.
  pub fn unify(&mut self) -> &mut impl Write { self.0.unify() }

  /// A reference to the proof stream for this theorem. Use [`ProofCmd::write_to`] to add
  /// commands to this stream. Do not add an `END` command at the end; [`finish`] will handle that.
  pub fn proof(&mut self) -> &mut impl Write { self.0.proof() }

  /// Finish the unify and proof streams for this theorem, and finalize the theorem addition.
  /// Returns the ID of the newly created theorem.
  pub fn finish(mut self) -> io::Result<ThmId> {
    self.unify().write_u8(0)?;
    self.proof().write_u8(0)?;
    self.0.finish()?;
    Ok(self.1)
  }
}