mio 0.7.0

Lightweight non-blocking IO
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
#![cfg(all(feature = "os-poll", feature = "tcp"))]

use mio::event::Source;
use mio::net::{TcpListener, TcpStream, UdpSocket};
use mio::{event, Events, Interest, Poll, Registry, Token};
use std::net;
use std::sync::{Arc, Barrier};
use std::thread::{self, sleep};
use std::time::Duration;
use std::{fmt, io};

mod util;

use util::{
    any_local_address, assert_send, assert_sync, expect_events, init, init_with_poll, ExpectEvent,
};

const ID1: Token = Token(1);
const ID2: Token = Token(2);
const ID3: Token = Token(3);

#[test]
fn is_send_and_sync() {
    assert_send::<Events>();
    assert_sync::<Events>();

    assert_sync::<Poll>();
    assert_send::<Poll>();

    assert_sync::<Registry>();
    assert_send::<Registry>();
}

#[test]
fn run_once_with_nothing() {
    init();

    let mut events = Events::with_capacity(16);
    let mut poll = Poll::new().unwrap();
    poll.poll(&mut events, Some(Duration::from_millis(100)))
        .unwrap();
}

#[test]
fn add_then_drop() {
    init();

    let mut events = Events::with_capacity(16);
    let mut l = TcpListener::bind(any_local_address()).unwrap();
    let mut poll = Poll::new().unwrap();
    poll.registry()
        .register(&mut l, Token(1), Interest::READABLE | Interest::WRITABLE)
        .unwrap();
    drop(l);
    poll.poll(&mut events, Some(Duration::from_millis(100)))
        .unwrap();
}

#[test]
fn zero_duration_polls_events() {
    init();

    let mut poll = Poll::new().unwrap();
    let mut events = Events::with_capacity(16);

    let listener = net::TcpListener::bind(any_local_address()).unwrap();
    let addr = listener.local_addr().unwrap();

    let streams: Vec<TcpStream> = (0..3)
        .map(|n| {
            let mut stream = TcpStream::connect(addr).unwrap();
            poll.registry()
                .register(&mut stream, Token(n), Interest::WRITABLE)
                .unwrap();
            stream
        })
        .collect();

    // Ensure the TcpStreams have some time to connection and for the events to
    // show up.
    sleep(Duration::from_millis(10));

    // Even when passing a zero duration timeout we still want do the system
    // call.
    poll.poll(&mut events, Some(Duration::from_nanos(0)))
        .unwrap();
    assert!(!events.is_empty());

    // Both need to live until here.
    drop(streams);
    drop(listener);
}

#[test]
fn poll_closes_fd() {
    init();

    for _ in 0..2000 {
        let mut poll = Poll::new().unwrap();
        let mut events = Events::with_capacity(4);

        poll.poll(&mut events, Some(Duration::from_millis(0)))
            .unwrap();

        drop(poll);
    }
}

#[test]
fn drop_cancels_interest_and_shuts_down() {
    init();

    use mio::net::TcpStream;
    use std::io;
    use std::io::Read;
    use std::net::TcpListener;
    use std::thread;

    let l = TcpListener::bind("127.0.0.1:0").unwrap();
    let addr = l.local_addr().unwrap();

    let t = thread::spawn(move || {
        let mut s = l.incoming().next().unwrap().unwrap();
        s.set_read_timeout(Some(Duration::from_secs(5)))
            .expect("set_read_timeout");
        let r = s.read(&mut [0; 16]);
        match r {
            Ok(_) => (),
            Err(e) => {
                if e.kind() != io::ErrorKind::UnexpectedEof {
                    panic!(e);
                }
            }
        }
    });

    let mut poll = Poll::new().unwrap();
    let mut s = TcpStream::connect(addr).unwrap();

    poll.registry()
        .register(&mut s, Token(1), Interest::READABLE | Interest::WRITABLE)
        .unwrap();
    let mut events = Events::with_capacity(16);
    'outer: loop {
        poll.poll(&mut events, None).unwrap();
        for event in &events {
            if event.token() == Token(1) {
                // connected
                break 'outer;
            }
        }
    }

    let mut b = [0; 1024];
    match s.read(&mut b) {
        Ok(_) => panic!("unexpected ok"),
        Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => (),
        Err(e) => panic!("unexpected error: {:?}", e),
    }

    drop(s);
    t.join().unwrap();
}

#[test]
fn registry_behind_arc() {
    // `Registry` should work behind an `Arc`, being `Sync` and `Send`.
    init();

    let mut poll = Poll::new().unwrap();
    let registry = Arc::new(poll.registry().try_clone().unwrap());
    let mut events = Events::with_capacity(128);

    let mut listener = TcpListener::bind(any_local_address()).unwrap();
    let addr = listener.local_addr().unwrap();
    let barrier = Arc::new(Barrier::new(3));

    let registry2 = Arc::clone(&registry);
    let registry3 = Arc::clone(&registry);
    let barrier2 = Arc::clone(&barrier);
    let barrier3 = Arc::clone(&barrier);

    let handle1 = thread::spawn(move || {
        registry2
            .register(&mut listener, Token(0), Interest::READABLE)
            .unwrap();
        barrier2.wait();
    });
    let handle2 = thread::spawn(move || {
        let mut stream = TcpStream::connect(addr).unwrap();
        registry3
            .register(
                &mut stream,
                Token(1),
                Interest::READABLE | Interest::WRITABLE,
            )
            .unwrap();
        barrier3.wait();
    });

    poll.poll(&mut events, Some(Duration::from_millis(1000)))
        .unwrap();
    assert!(events.iter().count() >= 1);

    // Let the threads return.
    barrier.wait();

    handle1.join().unwrap();
    handle2.join().unwrap();
}

/// Call all registration operations, ending with `source` being registered with `token` and `final_interests`.
pub fn registry_ops_flow(
    registry: &Registry,
    source: &mut dyn Source,
    token: Token,
    init_interests: Interest,
    final_interests: Interest,
) -> io::Result<()> {
    registry.register(source, token, init_interests).unwrap();
    registry.deregister(source).unwrap();

    registry.register(source, token, init_interests).unwrap();
    registry.reregister(source, token, final_interests)
}

#[test]
fn registry_operations_are_thread_safe() {
    let (mut poll, mut events) = init_with_poll();

    let registry = Arc::new(poll.registry().try_clone().unwrap());
    let registry1 = Arc::clone(&registry);
    let registry2 = Arc::clone(&registry);
    let registry3 = Arc::clone(&registry);

    let barrier = Arc::new(Barrier::new(4));
    let barrier1 = Arc::clone(&barrier);
    let barrier2 = Arc::clone(&barrier);
    let barrier3 = Arc::clone(&barrier);

    let mut listener = TcpListener::bind(any_local_address()).unwrap();
    let addr = listener.local_addr().unwrap();

    // Expect that multiple register/deregister/reregister work fine on multiple
    // threads. Main thread will wait before the expect_events for all other 3
    // threads to do their work. Otherwise expect_events timeout might be too short
    // for all threads to complete, and call might fail.

    let handle1 = thread::spawn(move || {
        registry_ops_flow(
            &registry1,
            &mut listener,
            ID1,
            Interest::READABLE,
            Interest::READABLE,
        )
        .unwrap();

        barrier1.wait();
        barrier1.wait();
    });

    let handle2 = thread::spawn(move || {
        let mut udp_socket = UdpSocket::bind(any_local_address()).unwrap();
        registry_ops_flow(
            &registry2,
            &mut udp_socket,
            ID2,
            Interest::WRITABLE,
            Interest::WRITABLE.add(Interest::READABLE),
        )
        .unwrap();

        barrier2.wait();
        barrier2.wait();
    });

    let handle3 = thread::spawn(move || {
        let mut stream = TcpStream::connect(addr).unwrap();
        registry_ops_flow(
            &registry3,
            &mut stream,
            ID3,
            Interest::READABLE,
            Interest::READABLE | Interest::WRITABLE,
        )
        .unwrap();

        barrier3.wait();
        barrier3.wait();
    });

    // wait for threads to finish before expect_events
    barrier.wait();
    expect_events(
        &mut poll,
        &mut events,
        vec![
            ExpectEvent::new(ID1, Interest::READABLE),
            ExpectEvent::new(ID2, Interest::WRITABLE),
            ExpectEvent::new(ID3, Interest::WRITABLE),
        ],
    );

    // Let the threads return.
    barrier.wait();

    handle1.join().unwrap();
    handle2.join().unwrap();
    handle3.join().unwrap();
}

#[test]
fn register_during_poll() {
    let (mut poll, mut events) = init_with_poll();
    let registry = poll.registry().try_clone().unwrap();

    let barrier = Arc::new(Barrier::new(2));
    let barrier1 = Arc::clone(&barrier);

    let handle1 = thread::spawn(move || {
        let mut stream = UdpSocket::bind(any_local_address()).unwrap();

        barrier1.wait();
        // Get closer to "trying" to register during a poll by doing a short
        // sleep before register to give main thread enough time to start
        // waiting the 5 sec long poll.
        sleep(Duration::from_millis(200));
        registry
            .register(&mut stream, ID1, Interest::WRITABLE)
            .unwrap();

        barrier1.wait();
        drop(stream);
    });

    // Unlock the thread, allow it to register the `UdpSocket`.
    barrier.wait();
    // Concurrently (at least we attempt to) call `Poll::poll`.
    poll.poll(&mut events, Some(Duration::from_secs(5)))
        .unwrap();

    let mut iter = events.iter();
    let event = iter.next().expect("expect an event");
    assert_eq!(event.token(), ID1);
    assert!(event.is_writable());
    assert!(iter.next().is_none(), "unexpected extra event");

    barrier.wait();
    handle1.join().unwrap();
}

// This test checks the following reregister constraints:
// - `reregister` arguments fully override the previous values. In other
// words, if a socket is registered with `READABLE` interest and the call
// to `reregister` specifies `WRITABLE`, then read interest is no longer
// requested for the handle.
// - `reregister` can use the same token as `register`
// - `reregister` can use different token from `register`
// - multiple `reregister` are ok
#[test]
fn reregister_interest_token_usage() {
    let (mut poll, mut events) = init_with_poll();

    let mut udp_socket = UdpSocket::bind(any_local_address()).unwrap();

    poll.registry()
        .register(&mut udp_socket, ID1, Interest::READABLE)
        .expect("unable to register listener");

    poll.registry()
        .reregister(&mut udp_socket, ID1, Interest::READABLE)
        .expect("unable to register listener");

    poll.registry()
        .reregister(&mut udp_socket, ID2, Interest::WRITABLE)
        .expect("unable to register listener");

    expect_events(
        &mut poll,
        &mut events,
        vec![ExpectEvent::new(ID2, Interest::WRITABLE)],
    );
}

// This test checks the following register constraint:
// The event source must **not** have been previously registered with this
// instance of `Poll`, otherwise the behavior is undefined.
//
// This test is done on Windows and epoll platforms where registering a
// source twice is defined behavior that fail with an error code.
//
// On kqueue platforms registering twice (not *re*registering) works, but that
// is not a test goal, so it is not tested.
#[test]
#[cfg(any(target_os = "linux", target_os = "windows"))]
pub fn double_register_different_token() {
    init();
    let poll = Poll::new().unwrap();

    let mut l = TcpListener::bind("127.0.0.1:0".parse().unwrap()).unwrap();

    poll.registry()
        .register(&mut l, Token(0), Interest::READABLE)
        .unwrap();

    assert!(poll
        .registry()
        .register(&mut l, Token(1), Interest::READABLE)
        .is_err());
}

#[test]
fn poll_ok_after_cancelling_pending_ops() {
    let (mut poll, mut events) = init_with_poll();

    let mut listener = TcpListener::bind(any_local_address()).unwrap();
    let address = listener.local_addr().unwrap();

    let registry = Arc::new(poll.registry().try_clone().unwrap());
    let registry1 = Arc::clone(&registry);

    let barrier = Arc::new(Barrier::new(2));
    let barrier1 = Arc::clone(&barrier);

    registry
        .register(&mut listener, ID1, Interest::READABLE)
        .unwrap();

    // Call a dummy poll just to submit an afd poll request
    poll.poll(&mut events, Some(Duration::from_millis(0)))
        .unwrap();

    // This reregister will cancel the previous pending poll op.
    // The token is different from the register done above, so it can ensure
    // the proper event got returned expect_events below.
    registry
        .reregister(&mut listener, ID2, Interest::READABLE)
        .unwrap();

    let handle = thread::spawn(move || {
        let mut stream = TcpStream::connect(address).unwrap();

        barrier1.wait();

        registry1
            .register(&mut stream, ID3, Interest::WRITABLE)
            .unwrap();

        barrier1.wait();
    });

    // listener ready to accept stream? getting `READABLE` here means the
    // cancelled poll op was cleared, another poll request was submitted
    // which resulted in returning this event
    expect_events(
        &mut poll,
        &mut events,
        vec![ExpectEvent::new(ID2, Interest::READABLE)],
    );

    let (_, _) = listener.accept().unwrap();
    barrier.wait();

    // for the sake of completeness check stream `WRITABLE`
    expect_events(
        &mut poll,
        &mut events,
        vec![ExpectEvent::new(ID3, Interest::WRITABLE)],
    );

    barrier.wait();
    handle.join().expect("unable to join thread");
}

struct TestEventSource {
    registrations: Vec<(Token, Interest)>,
    reregistrations: Vec<(Token, Interest)>,
    deregister_count: usize,
}

impl TestEventSource {
    fn new() -> TestEventSource {
        TestEventSource {
            registrations: Vec::new(),
            reregistrations: Vec::new(),
            deregister_count: 0,
        }
    }
}

impl event::Source for TestEventSource {
    fn register(
        &mut self,
        _registry: &Registry,
        token: Token,
        interests: Interest,
    ) -> io::Result<()> {
        self.registrations.push((token, interests));
        Ok(())
    }

    fn reregister(
        &mut self,
        _registry: &Registry,
        token: Token,
        interests: Interest,
    ) -> io::Result<()> {
        self.reregistrations.push((token, interests));
        Ok(())
    }

    fn deregister(&mut self, _registry: &Registry) -> io::Result<()> {
        self.deregister_count += 1;
        Ok(())
    }
}

#[test]
fn poll_registration() {
    init();
    let poll = Poll::new().unwrap();
    let registry = poll.registry();

    let mut source = TestEventSource::new();
    let token = Token(0);
    let interests = Interest::READABLE;
    registry.register(&mut source, token, interests).unwrap();
    assert_eq!(source.registrations.len(), 1);
    assert_eq!(source.registrations.get(0), Some(&(token, interests)));
    assert!(source.reregistrations.is_empty());
    assert_eq!(source.deregister_count, 0);

    let re_token = Token(0);
    let re_interests = Interest::READABLE;
    registry
        .reregister(&mut source, re_token, re_interests)
        .unwrap();
    assert_eq!(source.registrations.len(), 1);
    assert_eq!(source.reregistrations.len(), 1);
    assert_eq!(
        source.reregistrations.get(0),
        Some(&(re_token, re_interests))
    );
    assert_eq!(source.deregister_count, 0);

    registry.deregister(&mut source).unwrap();
    assert_eq!(source.registrations.len(), 1);
    assert_eq!(source.reregistrations.len(), 1);
    assert_eq!(source.deregister_count, 1);
}

struct ErroneousTestEventSource;

impl event::Source for ErroneousTestEventSource {
    fn register(
        &mut self,
        _registry: &Registry,
        _token: Token,
        _interests: Interest,
    ) -> io::Result<()> {
        Err(io::Error::new(io::ErrorKind::Other, "register"))
    }

    fn reregister(
        &mut self,
        _registry: &Registry,
        _token: Token,
        _interests: Interest,
    ) -> io::Result<()> {
        Err(io::Error::new(io::ErrorKind::Other, "reregister"))
    }

    fn deregister(&mut self, _registry: &Registry) -> io::Result<()> {
        Err(io::Error::new(io::ErrorKind::Other, "deregister"))
    }
}

#[test]
fn poll_erroneous_registration() {
    init();
    let poll = Poll::new().unwrap();
    let registry = poll.registry();

    let mut source = ErroneousTestEventSource;
    let token = Token(0);
    let interests = Interest::READABLE;
    assert_error(registry.register(&mut source, token, interests), "register");
    assert_error(
        registry.reregister(&mut source, token, interests),
        "reregister",
    );
    assert_error(registry.deregister(&mut source), "deregister");
}

/// Assert that `result` is an error and the formatted error (via
/// `fmt::Display`) equals `expected_msg`.
pub fn assert_error<T, E: fmt::Display>(result: Result<T, E>, expected_msg: &str) {
    match result {
        Ok(_) => panic!("unexpected OK result"),
        Err(err) => assert!(
            err.to_string().contains(expected_msg),
            "wanted: {}, got: {}",
            err,
            expected_msg
        ),
    }
}