mio 0.5.1

Lightweight non-blocking IO
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
use std::fmt;
use std::io::{self, Read, Write, Cursor};
use std::mem;
use std::net::{self, SocketAddr};
use std::os::windows::prelude::*;
use std::sync::{Mutex, MutexGuard};

use net2::{self, TcpBuilder};
use net::tcp::Shutdown;
use miow::iocp::CompletionStatus;
use miow::net::*;
use winapi::*;

use {Evented, EventSet, PollOpt, Selector, Token};
use event::IoEvent;
use sys::windows::selector::{Overlapped, Registration};
use sys::windows::{wouldblock, Family};
use sys::windows::from_raw_arc::FromRawArc;

pub struct TcpStream {
    /// Separately stored implementation to ensure that the `Drop`
    /// implementation on this type is only executed when it's actually dropped
    /// (many clones of this `imp` are made).
    imp: StreamImp,
}

pub struct TcpListener {
    imp: ListenerImp,
}

#[derive(Clone)]
struct StreamImp {
    /// A stable address and synchronized access for all internals. This serves
    /// to ensure that all `Overlapped` pointers are valid for a long period of
    /// time as well as allowing completion callbacks to have access to the
    /// internals without having ownership.
    ///
    /// Note that the reference count also allows us "loan out" copies to
    /// completion ports while I/O is running to guarantee that this stays alive
    /// until the I/O completes. You'll notice a number of calls to
    /// `mem::forget` below, and these only happen on successful scheduling of
    /// I/O and are paired with `overlapped2arc!` macro invocations in the
    /// completion callbacks (to have a decrement match the increment).
    inner: FromRawArc<StreamIo>,
}

#[derive(Clone)]
struct ListenerImp {
    inner: FromRawArc<ListenerIo>,
}

struct StreamIo {
    inner: Mutex<StreamInner>,
    read: Overlapped, // also used for connect
    write: Overlapped,
}

struct ListenerIo {
    inner: Mutex<ListenerInner>,
    accept: Overlapped,
}

struct StreamInner {
    socket: net::TcpStream,
    iocp: Registration,
    deferred_connect: Option<SocketAddr>,
    read: State<Vec<u8>, Cursor<Vec<u8>>>,
    write: State<(Vec<u8>, usize), (Vec<u8>, usize)>,
}

struct ListenerInner {
    socket: net::TcpListener,
    family: Family,
    iocp: Registration,
    accept: State<net::TcpStream, (net::TcpStream, SocketAddr)>,
    accept_buf: AcceptAddrsBuf,
}

enum State<T, U> {
    Empty,              // no I/O operation in progress
    Pending(T),         // an I/O operation is in progress
    Ready(U),           // I/O has finished with this value
    Error(io::Error),   // there was an I/O error
}

impl TcpStream {
    fn new(socket: net::TcpStream,
           deferred_connect: Option<SocketAddr>) -> TcpStream {
        TcpStream {
            imp: StreamImp {
                inner: FromRawArc::new(StreamIo {
                    read: Overlapped::new(read_done),
                    write: Overlapped::new(write_done),
                    inner: Mutex::new(StreamInner {
                        socket: socket,
                        iocp: Registration::new(),
                        deferred_connect: deferred_connect,
                        read: State::Empty,
                        write: State::Empty,
                    }),
                }),
            },
        }
    }

    pub fn connect(socket: net::TcpStream, addr: &SocketAddr)
                   -> io::Result<TcpStream> {
        Ok(TcpStream::new(socket, Some(*addr)))
    }

    pub fn peer_addr(&self) -> io::Result<SocketAddr> {
        self.inner().socket.peer_addr()
    }

    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.inner().socket.local_addr()
    }

    pub fn try_clone(&self) -> io::Result<TcpStream> {
        self.inner().socket.try_clone().map(|s| TcpStream::new(s, None))
    }

    pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
        self.inner().socket.shutdown(how)
    }

    pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> {
        net2::TcpStreamExt::set_nodelay(&self.inner().socket, nodelay)
    }

    pub fn set_keepalive(&self, seconds: Option<u32>) -> io::Result<()> {
        let dur = seconds.map(|s| s * 1000);
        net2::TcpStreamExt::set_keepalive_ms(&self.inner().socket, dur)
    }

    pub fn take_socket_error(&self) -> io::Result<()> {
        net2::TcpStreamExt::take_error(&self.inner().socket).and_then(|e| {
            match e {
                Some(e) => Err(e),
                None => Ok(())
            }
        })
    }

    fn inner(&self) -> MutexGuard<StreamInner> {
        self.imp.inner()
    }

    fn post_register(&self, interest: EventSet, me: &mut StreamInner) {
        if interest.is_readable() {
            self.imp.schedule_read(me);
        }

        // At least with epoll, if a socket is registered with an interest in
        // writing and it's immediately writable then a writable event is
        // generated immediately, so do so here.
        if interest.is_writable() {
            if let State::Empty = me.write {
                me.iocp.defer(EventSet::writable());
            }
        }
    }
}

impl StreamImp {
    fn inner(&self) -> MutexGuard<StreamInner> {
        self.inner.inner.lock().unwrap()
    }

    fn schedule_connect(&self, addr: &SocketAddr, me: &mut StreamInner)
                        -> io::Result<()> {
        unsafe {
            trace!("scheduling a connect");
            try!(me.socket.connect_overlapped(addr, self.inner.read.get_mut()));
        }
        // see docs above on StreamImp.inner for rationale on forget
        mem::forget(self.clone());
        Ok(())
    }

    /// Issues a "read" operation for this socket, if applicable.
    ///
    /// This is intended to be invoked from either a completion callback or a
    /// normal context. The function is infallible because errors are stored
    /// internally to be returned later.
    ///
    /// It is required that this function is only called after the handle has
    /// been registered with an event loop.
    fn schedule_read(&self, me: &mut StreamInner) {
        match me.read {
            State::Empty => {}
            _ => return,
        }

        me.iocp.unset_readiness(EventSet::readable());

        let mut buf = me.iocp.get_buffer(64 * 1024);
        let res = unsafe {
            trace!("scheduling a read");
            let cap = buf.capacity();
            buf.set_len(cap);
            me.socket.read_overlapped(&mut buf, self.inner.read.get_mut())
        };
        match res {
            Ok(_) => {
                // see docs above on StreamImp.inner for rationale on forget
                me.read = State::Pending(buf);
                mem::forget(self.clone());
            }
            Err(e) => {
                // Like above, be sure to indicate that hup has happened
                // whenever we get `ECONNRESET`
                let mut set = EventSet::readable();
                if e.raw_os_error() == Some(WSAECONNRESET as i32) {
                    set = set | EventSet::hup();
                }
                me.read = State::Error(e);
                me.iocp.defer(set);
                me.iocp.put_buffer(buf);
            }
        }
    }

    /// Similar to `schedule_read`, except that this issues, well, writes.
    ///
    /// This function will continually attempt to write the entire contents of
    /// the buffer `buf` until they have all been written. The `pos` argument is
    /// the current offset within the buffer up to which the contents have
    /// already been written.
    ///
    /// A new writable event (e.g. allowing another write) will only happen once
    /// the buffer has been written completely (or hit an error).
    fn schedule_write(&self, buf: Vec<u8>, pos: usize,
                      me: &mut StreamInner) {

        // About to write, clear any pending level triggered events
        me.iocp.unset_readiness(EventSet::writable());

        trace!("scheduling a write");
        let err = unsafe {
            me.socket.write_overlapped(&buf[pos..], self.inner.write.get_mut())
        };
        match err {
            Ok(_) => {
                // see docs above on StreamImp.inner for rationale on forget
                me.write = State::Pending((buf, pos));
                mem::forget(self.clone());
            }
            Err(e) => {
                me.write = State::Error(e);
                me.iocp.defer(EventSet::writable());
                me.iocp.put_buffer(buf);
            }
        }
    }

    /// Pushes an event for this socket onto the selector its registered for.
    ///
    /// When an event is generated on this socket, if it happened after the
    /// socket was closed then we don't want to actually push the event onto our
    /// selector as otherwise it's just a spurious notification.
    fn push(&self, me: &mut StreamInner, set: EventSet,
            into: &mut Vec<IoEvent>) {
        if me.socket.as_raw_socket() != INVALID_SOCKET {
            me.iocp.push_event(set, into);
        }
    }
}

fn read_done(status: &CompletionStatus, dst: &mut Vec<IoEvent>) {
    let me2 = StreamImp {
        inner: unsafe { overlapped2arc!(status.overlapped(), StreamIo, read) },
    };

    let mut me = me2.inner();
    match mem::replace(&mut me.read, State::Empty) {
        State::Pending(mut buf) => {
            trace!("finished a read: {}", status.bytes_transferred());

            unsafe {
                buf.set_len(status.bytes_transferred() as usize);
            }

            me.read = State::Ready(Cursor::new(buf));

            // If we transferred 0 bytes then be sure to indicate that hup
            // happened.
            let mut e = EventSet::readable();

            if status.bytes_transferred() == 0 {
                e = e | EventSet::hup();
            }

            return me2.push(&mut me, e, dst)
        }
        s => me.read = s,
    }

    // If a read didn't complete, then the connect must have just finished.
    trace!("finished a connect");
    me2.push(&mut me, EventSet::writable(), dst);
    me2.schedule_read(&mut me);
}

fn write_done(status: &CompletionStatus, dst: &mut Vec<IoEvent>) {
    trace!("finished a write {}", status.bytes_transferred());
    let me2 = StreamImp {
        inner: unsafe { overlapped2arc!(status.overlapped(), StreamIo, write) },
    };
    let mut me = me2.inner();
    let (buf, pos) = match mem::replace(&mut me.write, State::Empty) {
        State::Pending(pair) => pair,
        _ => unreachable!(),
    };
    let new_pos = pos + (status.bytes_transferred() as usize);
    if new_pos == buf.len() {
        me2.push(&mut me, EventSet::writable(), dst);
    } else {
        me2.schedule_write(buf, new_pos, &mut me);
    }
}

impl Read for TcpStream {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let mut me = self.inner();

        match mem::replace(&mut me.read, State::Empty) {
            State::Empty => Err(wouldblock()),
            State::Pending(buf) => {
                me.read = State::Pending(buf);
                Err(wouldblock())
            }
            State::Ready(mut cursor) => {
                let amt = try!(cursor.read(buf));
                // Once the entire buffer is written we need to schedule the
                // next read operation.
                if cursor.position() as usize == cursor.get_ref().len() {
                    me.iocp.put_buffer(cursor.into_inner());
                    self.imp.schedule_read(&mut me);
                } else {
                    me.read = State::Ready(cursor);
                }
                Ok(amt)
            }
            State::Error(e) => {
                self.imp.schedule_read(&mut me);
                Err(e)
            }
        }
    }
}

impl Write for TcpStream {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let mut me = self.inner();
        let me = &mut *me;

        match me.write {
            State::Empty => {}
            _ => return Err(wouldblock())
        }

        if me.iocp.port().is_none() {
            return Err(wouldblock())
        }

        let mut intermediate = me.iocp.get_buffer(64 * 1024);
        let amt = try!(intermediate.write(buf));
        self.imp.schedule_write(intermediate, 0, me);
        Ok(amt)
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

impl Evented for TcpStream {
    fn register(&self, selector: &mut Selector, token: Token,
                interest: EventSet, opts: PollOpt) -> io::Result<()> {
        let mut me = self.inner();
        let me = &mut *me;
        try!(me.iocp.register_socket(&me.socket, selector, token, interest,
                                     opts));

        // If we were connected before being registered process that request
        // here and go along our merry ways. Note that the callback for a
        // successful connect will worry about generating writable/readable
        // events and scheduling a new read.
        if let Some(addr) = me.deferred_connect.take() {
            return self.imp.schedule_connect(&addr, me).map(|_| ())
        }
        self.post_register(interest, me);
        Ok(())
    }

    fn reregister(&self, selector: &mut Selector, token: Token,
                  interest: EventSet, opts: PollOpt) -> io::Result<()> {
        let mut me = self.inner();
        {
            let me = &mut *me;
            try!(me.iocp.reregister_socket(&me.socket, selector, token,
                                           interest, opts));
        }
        self.post_register(interest, &mut me);
        Ok(())
    }

    fn deregister(&self, selector: &mut Selector) -> io::Result<()> {
        self.inner().iocp.checked_deregister(selector)
    }
}

impl fmt::Debug for TcpStream {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        "TcpStream { ... }".fmt(f)
    }
}

impl Drop for TcpStream {
    fn drop(&mut self) {
        let mut inner = self.inner();
        // When the `TcpSocket` itself is dropped then we close the internal
        // handle (e.g. call `closesocket`). This will cause all pending I/O
        // operations to forcibly finish and we'll get notifications for all of
        // them and clean up the rest of our internal state (yay!).
        //
        // This is achieved by replacing our socket with an invalid one, so all
        // further operations will return an error (but no further operations
        // should be done anyway).
        inner.socket = unsafe {
            net::TcpStream::from_raw_socket(INVALID_SOCKET)
        };

        // Then run any finalization code including level notifications
        inner.iocp.deregister();
    }
}

impl TcpListener {
    pub fn new(socket: net::TcpListener, addr: &SocketAddr)
               -> io::Result<TcpListener> {
        Ok(TcpListener::new_family(socket, match *addr {
            SocketAddr::V4(..) => Family::V4,
            SocketAddr::V6(..) => Family::V6,
        }))
    }

    fn new_family(socket: net::TcpListener, family: Family) -> TcpListener {
        TcpListener {
            imp: ListenerImp {
                inner: FromRawArc::new(ListenerIo {
                    accept: Overlapped::new(accept_done),
                    inner: Mutex::new(ListenerInner {
                        socket: socket,
                        iocp: Registration::new(),
                        accept: State::Empty,
                        accept_buf: AcceptAddrsBuf::new(),
                        family: family,
                    }),
                }),
            },
        }
    }

    pub fn accept(&self) -> io::Result<Option<(TcpStream, SocketAddr)>> {
        let mut me = self.inner();

        let ret = match mem::replace(&mut me.accept, State::Empty) {
            State::Empty => return Ok(None),
            State::Pending(t) => {
                me.accept = State::Pending(t);
                return Ok(None)
            }
            State::Ready((s, a)) => {
                Ok(Some((TcpStream::new(s, None), a)))
            }
            State::Error(e) => Err(e),
        };

        self.imp.schedule_accept(&mut me);

        return ret
    }

    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.inner().socket.local_addr()
    }

    pub fn try_clone(&self) -> io::Result<TcpListener> {
        let inner = self.inner();
        inner.socket.try_clone().map(|s| {
            TcpListener::new_family(s, inner.family)
        })
    }

    pub fn take_socket_error(&self) -> io::Result<()> {
        net2::TcpListenerExt::take_error(&self.inner().socket).and_then(|e| {
            match e {
                Some(e) => Err(e),
                None => Ok(())
            }
        })
    }

    fn inner(&self) -> MutexGuard<ListenerInner> {
        self.imp.inner()
    }
}

impl ListenerImp {
    fn inner(&self) -> MutexGuard<ListenerInner> {
        self.inner.inner.lock().unwrap()
    }

    fn schedule_accept(&self, me: &mut ListenerInner) {
        match me.accept {
            State::Empty => {}
            _ => return
        }

        me.iocp.unset_readiness(EventSet::readable());

        let res = match me.family {
            Family::V4 => TcpBuilder::new_v4(),
            Family::V6 => TcpBuilder::new_v6(),
        }.and_then(|builder| unsafe {
            trace!("scheduling an accept");
            me.socket.accept_overlapped(&builder, &mut me.accept_buf,
                                        self.inner.accept.get_mut())
        });
        match res {
            Ok((socket, _)) => {
                // see docs above on StreamImp.inner for rationale on forget
                me.accept = State::Pending(socket);
                mem::forget(self.clone());
            }
            Err(e) => {
                me.accept = State::Error(e);
                me.iocp.defer(EventSet::readable());
            }
        }
    }

    // See comments in StreamImp::push
    fn push(&self, me: &mut ListenerInner, set: EventSet,
            into: &mut Vec<IoEvent>) {
        if me.socket.as_raw_socket() != INVALID_SOCKET {
            me.iocp.push_event(set, into);
        }
    }
}

fn accept_done(status: &CompletionStatus, dst: &mut Vec<IoEvent>) {
    let me2 = ListenerImp {
        inner: unsafe { overlapped2arc!(status.overlapped(), ListenerIo, accept) },
    };

    let mut me = me2.inner();
    let socket = match mem::replace(&mut me.accept, State::Empty) {
        State::Pending(s) => s,
        _ => unreachable!(),
    };
    trace!("finished an accept");
    me.accept = match me.accept_buf.parse(&me.socket) {
        Ok(buf) => State::Ready((socket, buf.remote().unwrap())),
        Err(e) => State::Error(e),
    };
    me2.push(&mut me, EventSet::readable(), dst);
}

impl Evented for TcpListener {
    fn register(&self, selector: &mut Selector, token: Token,
                interest: EventSet, opts: PollOpt) -> io::Result<()> {
        let mut me = self.inner();
        let me = &mut *me;
        try!(me.iocp.register_socket(&me.socket, selector, token, interest,
                                     opts));
        self.imp.schedule_accept(me);
        Ok(())
    }

    fn reregister(&self, selector: &mut Selector, token: Token,
                  interest: EventSet, opts: PollOpt) -> io::Result<()> {
        let mut me = self.inner();
        let me = &mut *me;
        try!(me.iocp.reregister_socket(&me.socket, selector, token,
                                       interest, opts));
        self.imp.schedule_accept(me);
        Ok(())
    }

    fn deregister(&self, selector: &mut Selector) -> io::Result<()> {
        self.inner().iocp.checked_deregister(selector)
    }
}

impl fmt::Debug for TcpListener {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        "TcpListener { ... }".fmt(f)
    }
}

impl Drop for TcpListener {
    fn drop(&mut self) {
        let mut inner = self.inner();

        // See comments in TcpStream
        inner.socket = unsafe {
            net::TcpListener::from_raw_socket(INVALID_SOCKET)
        };

        // Then run any finalization code including level notifications
        inner.iocp.deregister();
    }
}