miden_assembly/
assembler.rs

1use alloc::{collections::BTreeMap, string::ToString, sync::Arc, vec::Vec};
2
3use miden_assembly_syntax::{
4    KernelLibrary, Library, LibraryNamespace, LibraryPath, Parse, ParseOptions,
5    SemanticAnalysisError,
6    ast::{
7        self, Export, InvocationTarget, InvokeKind, ModuleKind, QualifiedProcedureName,
8        types::FunctionType,
9    },
10    debuginfo::{DefaultSourceManager, SourceManager, SourceSpan, Spanned},
11    diagnostics::{RelatedLabel, Report},
12    library::LibraryExport,
13};
14use miden_core::{
15    AssemblyOp, Decorator, Felt, Kernel, Operation, Program, WORD_SIZE, Word,
16    mast::{DecoratorId, MastNodeId},
17};
18
19use crate::{
20    GlobalProcedureIndex, ModuleIndex, Procedure, ProcedureContext,
21    basic_block_builder::{BasicBlockBuilder, BasicBlockOrDecorators},
22    linker::{
23        CallerInfo, LinkLibrary, LinkLibraryKind, Linker, LinkerError, ModuleLink, ProcedureLink,
24        ResolvedTarget,
25    },
26    mast_forest_builder::MastForestBuilder,
27};
28
29// ASSEMBLER
30// ================================================================================================
31
32/// The [Assembler] produces a _Merkelized Abstract Syntax Tree (MAST)_ from Miden Assembly sources,
33/// as an artifact of one of three types:
34///
35/// * A kernel library (see [`KernelLibrary`])
36/// * A library (see [`Library`])
37/// * A program (see [`Program`])
38///
39/// Assembled artifacts can additionally reference or include code from previously assembled
40/// libraries.
41///
42/// # Usage
43///
44/// Depending on your needs, there are multiple ways of using the assembler, starting with the
45/// type of artifact you want to produce:
46///
47/// * If you wish to produce an executable program, you will call [`Self::assemble_program`] with
48///   the source module which contains the program entrypoint.
49/// * If you wish to produce a library for use in other executables, you will call
50///   [`Self::assemble_library`] with the source module(s) whose exports form the public API of the
51///   library.
52/// * If you wish to produce a kernel library, you will call [`Self::assemble_kernel`] with the
53///   source module(s) whose exports form the public API of the kernel.
54///
55/// In the case where you are assembling a library or program, you also need to determine if you
56/// need to specify a kernel. You will need to do so if any of your code needs to call into the
57/// kernel directly.
58///
59/// * If a kernel is needed, you should construct an `Assembler` using [`Assembler::with_kernel`]
60/// * Otherwise, you should construct an `Assembler` using [`Assembler::new`]
61///
62/// <div class="warning">
63/// Programs compiled with an empty kernel cannot use the `syscall` instruction.
64/// </div>
65///
66/// Lastly, you need to provide inputs to the assembler which it will use at link time to resolve
67/// references to procedures which are externally-defined (i.e. not defined in any of the modules
68/// provided to the `assemble_*` function you called). There are a few different ways to do this:
69///
70/// * If you have source code, or a [`ast::Module`], see [`Self::compile_and_statically_link`]
71/// * If you need to reference procedures from a previously assembled [`Library`], but do not want
72///   to include the MAST of those procedures in the assembled artifact, you want to _dynamically
73///   link_ that library, see [`Self::link_dynamic_library`] for more.
74/// * If you want to incorporate referenced procedures from a previously assembled [`Library`] into
75///   the assembled artifact, you want to _statically link_ that library, see
76///   [`Self::link_static_library`] for more.
77#[derive(Clone)]
78pub struct Assembler {
79    /// The source manager to use for compilation and source location information
80    source_manager: Arc<dyn SourceManager>,
81    /// The linker instance used internally to link assembler inputs
82    linker: Linker,
83    /// Whether to treat warning diagnostics as errors
84    warnings_as_errors: bool,
85    /// Whether the assembler enables extra debugging information.
86    in_debug_mode: bool,
87}
88
89impl Default for Assembler {
90    fn default() -> Self {
91        let source_manager = Arc::new(DefaultSourceManager::default());
92        let linker = Linker::new(source_manager.clone());
93        Self {
94            source_manager,
95            linker,
96            warnings_as_errors: false,
97            in_debug_mode: false,
98        }
99    }
100}
101
102// ------------------------------------------------------------------------------------------------
103/// Constructors
104impl Assembler {
105    /// Start building an [Assembler]
106    pub fn new(source_manager: Arc<dyn SourceManager>) -> Self {
107        let linker = Linker::new(source_manager.clone());
108        Self {
109            source_manager,
110            linker,
111            warnings_as_errors: false,
112            in_debug_mode: false,
113        }
114    }
115
116    /// Start building an [`Assembler`] with a kernel defined by the provided [KernelLibrary].
117    pub fn with_kernel(source_manager: Arc<dyn SourceManager>, kernel_lib: KernelLibrary) -> Self {
118        let (kernel, kernel_module, _) = kernel_lib.into_parts();
119        let linker = Linker::with_kernel(source_manager.clone(), kernel, kernel_module);
120        Self {
121            source_manager,
122            linker,
123            ..Default::default()
124        }
125    }
126
127    /// Sets the default behavior of this assembler with regard to warning diagnostics.
128    ///
129    /// When true, any warning diagnostics that are emitted will be promoted to errors.
130    pub fn with_warnings_as_errors(mut self, yes: bool) -> Self {
131        self.warnings_as_errors = yes;
132        self
133    }
134
135    /// Puts the assembler into the debug mode.
136    pub fn with_debug_mode(mut self, yes: bool) -> Self {
137        self.in_debug_mode = yes;
138        self
139    }
140
141    /// Sets the debug mode flag of the assembler
142    pub fn set_debug_mode(&mut self, yes: bool) {
143        self.in_debug_mode = yes;
144    }
145}
146
147// ------------------------------------------------------------------------------------------------
148/// Dependency Management
149impl Assembler {
150    /// Ensures `module` is compiled, and then statically links it into the final artifact.
151    ///
152    /// The given module must be a library module, or an error will be returned.
153    #[inline]
154    pub fn compile_and_statically_link(&mut self, module: impl Parse) -> Result<&mut Self, Report> {
155        self.compile_and_statically_link_all([module])
156    }
157
158    /// Ensures every module in `modules` is compiled, and then statically links them into the final
159    /// artifact.
160    ///
161    /// All of the given modules must be library modules, or an error will be returned.
162    pub fn compile_and_statically_link_all(
163        &mut self,
164        modules: impl IntoIterator<Item = impl Parse>,
165    ) -> Result<&mut Self, Report> {
166        let modules = modules
167            .into_iter()
168            .map(|module| {
169                module.parse_with_options(
170                    &self.source_manager,
171                    ParseOptions {
172                        warnings_as_errors: self.warnings_as_errors,
173                        ..ParseOptions::for_library()
174                    },
175                )
176            })
177            .collect::<Result<Vec<_>, Report>>()?;
178
179        self.linker.link_modules(modules)?;
180
181        Ok(self)
182    }
183
184    /// Compiles all Miden Assembly modules in the provided directory, and then statically links
185    /// them into the final artifact.
186    ///
187    /// When compiling each module, the path of the module is derived by appending path components
188    /// corresponding to the relative path of the module in `dir`, to `namespace`. If a source file
189    /// named `mod.masm` is found, the resulting module will derive its path using the path
190    /// components of the parent directory, rather than the file name.
191    ///
192    /// For example, let's assume we call this function with the namespace `my_lib`, for a
193    /// directory at path `~/masm`. Now, let's look at how various file system paths would get
194    /// translated to their corresponding module paths:
195    ///
196    /// | file path           | module path        |
197    /// |---------------------|--------------------|
198    /// | ~/masm/mod.masm     | "my_lib"           |
199    /// | ~/masm/foo.masm     | "my_lib::foo"      |
200    /// | ~/masm/bar/mod.masm | "my_lib::bar"      |
201    /// | ~/masm/bar/baz.masm | "my_lib::bar::baz" |
202    #[cfg(feature = "std")]
203    pub fn compile_and_statically_link_from_dir(
204        &mut self,
205        namespace: crate::LibraryNamespace,
206        dir: impl AsRef<std::path::Path>,
207    ) -> Result<(), Report> {
208        use miden_assembly_syntax::parser;
209
210        let modules = parser::read_modules_from_dir(namespace, dir, &self.source_manager)?;
211        self.linker.link_modules(modules)?;
212        Ok(())
213    }
214
215    /// Links the final artifact against `library`.
216    ///
217    /// The way in which procedures referenced in `library` will be linked by the final artifact is
218    /// determined by `kind`:
219    ///
220    /// * [`LinkLibraryKind::Dynamic`] inserts a reference to the procedure in the assembled MAST,
221    ///   but not the MAST of the procedure itself. Consequently, it is necessary to provide both
222    ///   the assembled artifact _and_ `library` to the VM when executing the program, otherwise the
223    ///   procedure reference will not be resolvable at runtime.
224    /// * [`LinkLibraryKind::Static`] includes the MAST of the referenced procedure in the final
225    ///   artifact, including any code reachable from that procedure contained in `library`. The
226    ///   resulting artifact does not require `library` to be provided to the VM when executing it,
227    ///   as all procedure references were resolved ahead of time.
228    pub fn link_library(
229        &mut self,
230        library: impl AsRef<Library>,
231        kind: LinkLibraryKind,
232    ) -> Result<(), Report> {
233        self.linker
234            .link_library(LinkLibrary {
235                library: Arc::new(library.as_ref().clone()),
236                kind,
237            })
238            .map_err(Report::from)
239    }
240
241    /// Dynamically link against `library` during assembly.
242    ///
243    /// This makes it possible to resolve references to procedures exported by the library during
244    /// assembly, without including code from the library into the assembled artifact.
245    ///
246    /// Dynamic linking produces smaller binaries, but requires you to provide `library` to the VM
247    /// at runtime when executing the assembled artifact.
248    ///
249    /// Internally, calls to procedures exported from `library` will be lowered to a
250    /// [`miden_core::mast::ExternalNode`] in the resulting MAST. These nodes represent an indirect
251    /// reference to the root MAST node of the referenced procedure. These indirect references
252    /// are resolved at runtime by the processor when executed.
253    ///
254    /// One consequence of these types of references, is that in the case where multiple procedures
255    /// have the same MAST root, but different decorators, it is not (currently) possible for the
256    /// processor to distinguish between which specific procedure (and its resulting decorators) the
257    /// caller intended to reference, and so any of them might be chosen.
258    ///
259    /// In order to reduce the chance of this producing confusing diagnostics or debugger output,
260    /// it is not recommended to export multiple procedures with the same MAST root, but differing
261    /// decorators, from a library. There are scenarios where this might be necessary, such as when
262    /// renaming a procedure, or moving it between modules, while keeping the original definition
263    /// around during a deprecation period. It is just something to be aware of if you notice, for
264    /// example, unexpected procedure paths or source locations in diagnostics - it could be due
265    /// to this edge case.
266    pub fn link_dynamic_library(&mut self, library: impl AsRef<Library>) -> Result<(), Report> {
267        self.linker
268            .link_library(LinkLibrary::dynamic(Arc::new(library.as_ref().clone())))
269            .map_err(Report::from)
270    }
271
272    /// Dynamically link against `library` during assembly.
273    ///
274    /// See [`Self::link_dynamic_library`] for more details.
275    pub fn with_dynamic_library(mut self, library: impl AsRef<Library>) -> Result<Self, Report> {
276        self.link_dynamic_library(library)?;
277        Ok(self)
278    }
279
280    /// Statically link against `library` during assembly.
281    ///
282    /// This makes it possible to resolve references to procedures exported by the library during
283    /// assembly, and ensure that the referenced procedure and any code reachable from it in that
284    /// library, are included in the assembled artifact.
285    ///
286    /// Static linking produces larger binaries, but allows you to produce self-contained artifacts
287    /// that avoid the requirement that you provide `library` to the VM at runtime.
288    pub fn link_static_library(&mut self, library: impl AsRef<Library>) -> Result<(), Report> {
289        self.linker
290            .link_library(LinkLibrary::r#static(Arc::new(library.as_ref().clone())))
291            .map_err(Report::from)
292    }
293
294    /// Statically link against `library` during assembly.
295    ///
296    /// See [`Self::link_static_library`]
297    pub fn with_static_library(mut self, library: impl AsRef<Library>) -> Result<Self, Report> {
298        self.link_static_library(library)?;
299        Ok(self)
300    }
301}
302
303// ------------------------------------------------------------------------------------------------
304/// Public Accessors
305impl Assembler {
306    /// Returns true if this assembler promotes warning diagnostics as errors by default.
307    pub fn warnings_as_errors(&self) -> bool {
308        self.warnings_as_errors
309    }
310
311    /// Returns true if this assembler was instantiated in debug mode.
312    pub fn in_debug_mode(&self) -> bool {
313        self.in_debug_mode
314    }
315
316    /// Returns a reference to the kernel for this assembler.
317    ///
318    /// If the assembler was instantiated without a kernel, the internal kernel will be empty.
319    pub fn kernel(&self) -> &Kernel {
320        self.linker.kernel()
321    }
322
323    #[cfg(any(test, feature = "testing"))]
324    #[doc(hidden)]
325    pub fn linker(&self) -> &Linker {
326        &self.linker
327    }
328}
329
330// ------------------------------------------------------------------------------------------------
331/// Compilation/Assembly
332impl Assembler {
333    /// Assembles a set of modules into a [Library].
334    ///
335    /// # Errors
336    ///
337    /// Returns an error if parsing or compilation of the specified modules fails.
338    pub fn assemble_library(
339        mut self,
340        modules: impl IntoIterator<Item = impl Parse>,
341    ) -> Result<Library, Report> {
342        let modules = modules
343            .into_iter()
344            .map(|module| {
345                module.parse_with_options(
346                    &self.source_manager,
347                    ParseOptions {
348                        warnings_as_errors: self.warnings_as_errors,
349                        ..ParseOptions::for_library()
350                    },
351                )
352            })
353            .collect::<Result<Vec<_>, Report>>()?;
354
355        let module_indices = self.linker.link(modules)?;
356
357        self.assemble_common(&module_indices)
358    }
359
360    /// Assemble a [Library] from a standard Miden Assembly project layout.
361    ///
362    /// The standard layout dictates that a given path is the root of a namespace, and the
363    /// directory hierarchy corresponds to the namespace hierarchy. A `.masm` file found in a
364    /// given subdirectory of the root, will be parsed with its [LibraryPath] set based on
365    /// where it resides in the directory structure.
366    ///
367    /// This function recursively parses the entire directory structure under `path`, ignoring
368    /// any files which do not have the `.masm` extension.
369    ///
370    /// For example, let's say I call this function like so:
371    ///
372    /// ```rust
373    /// use miden_assembly::{Assembler, LibraryNamespace};
374    ///
375    /// Assembler::default()
376    ///     .assemble_library_from_dir("~/masm/std", LibraryNamespace::new("std").unwrap());
377    /// ```
378    ///
379    /// Here's how we would handle various files under this path:
380    ///
381    /// - ~/masm/std/sys.masm            -> Parsed as "std::sys"
382    /// - ~/masm/std/crypto/hash.masm    -> Parsed as "std::crypto::hash"
383    /// - ~/masm/std/math/u32.masm       -> Parsed as "std::math::u32"
384    /// - ~/masm/std/math/u64.masm       -> Parsed as "std::math::u64"
385    /// - ~/masm/std/math/README.md      -> Ignored
386    #[cfg(feature = "std")]
387    pub fn assemble_library_from_dir(
388        self,
389        path: impl AsRef<std::path::Path>,
390        namespace: LibraryNamespace,
391    ) -> Result<Library, Report> {
392        use miden_assembly_syntax::parser;
393
394        let path = path.as_ref();
395
396        let source_manager = self.source_manager.clone();
397        let modules = parser::read_modules_from_dir(namespace, path, &source_manager)?;
398        self.assemble_library(modules)
399    }
400
401    /// Assembles the provided module into a [KernelLibrary] intended to be used as a Kernel.
402    ///
403    /// # Errors
404    ///
405    /// Returns an error if parsing or compilation of the specified modules fails.
406    pub fn assemble_kernel(mut self, module: impl Parse) -> Result<KernelLibrary, Report> {
407        let module = module.parse_with_options(
408            &self.source_manager,
409            ParseOptions {
410                path: Some(LibraryPath::new_from_components(LibraryNamespace::Kernel, [])),
411                warnings_as_errors: self.warnings_as_errors,
412                ..ParseOptions::for_kernel()
413            },
414        )?;
415
416        let module_indices = self.linker.link_kernel(module)?;
417
418        self.assemble_common(&module_indices)
419            .and_then(|lib| KernelLibrary::try_from(lib).map_err(Report::new))
420    }
421
422    /// Assemble a [KernelLibrary] from a standard Miden Assembly kernel project layout.
423    ///
424    /// The kernel library will export procedures defined by the module at `sys_module_path`.
425    ///
426    /// If the optional `lib_dir` is provided, all modules under this directory will be available
427    /// from the kernel module under the `$kernel` namespace. For example, if `lib_dir` is set to
428    /// "~/masm/lib", the files will be accessible in the kernel module as follows:
429    ///
430    /// - ~/masm/lib/foo.masm        -> Can be imported as "$kernel::foo"
431    /// - ~/masm/lib/bar/baz.masm    -> Can be imported as "$kernel::bar::baz"
432    ///
433    /// Note: this is a temporary structure which will likely change once
434    /// <https://github.com/0xMiden/miden-vm/issues/1436> is implemented.
435    #[cfg(feature = "std")]
436    pub fn assemble_kernel_from_dir(
437        mut self,
438        sys_module_path: impl AsRef<std::path::Path>,
439        lib_dir: Option<impl AsRef<std::path::Path>>,
440    ) -> Result<KernelLibrary, Report> {
441        // if library directory is provided, add modules from this directory to the assembler
442        if let Some(lib_dir) = lib_dir {
443            self.compile_and_statically_link_from_dir(LibraryNamespace::Kernel, lib_dir)?;
444        }
445
446        self.assemble_kernel(sys_module_path.as_ref())
447    }
448
449    /// Shared code used by both [`Self::assemble_library`] and [`Self::assemble_kernel`].
450    fn assemble_common(mut self, module_indices: &[ModuleIndex]) -> Result<Library, Report> {
451        let staticlibs = self.linker.libraries().filter_map(|lib| {
452            if matches!(lib.kind, LinkLibraryKind::Static) {
453                Some(lib.library.as_ref())
454            } else {
455                None
456            }
457        });
458        let mut mast_forest_builder = MastForestBuilder::new(staticlibs)?;
459        let mut exports = {
460            let mut exports = BTreeMap::new();
461
462            for module_idx in module_indices.iter().copied() {
463                // Note: it is safe to use `unwrap_ast()` here, since all of the modules contained
464                // in `module_indices` are in AST form by definition.
465                let ast_module = self.linker[module_idx].unwrap_ast().clone();
466
467                mast_forest_builder.merge_advice_map(ast_module.advice_map())?;
468
469                for (proc_idx, fqn) in ast_module.exported_procedures() {
470                    let gid = module_idx + proc_idx;
471                    self.compile_subgraph(gid, &mut mast_forest_builder)?;
472
473                    let node = mast_forest_builder
474                        .get_procedure(gid)
475                        .expect("compilation succeeded but root not found in cache")
476                        .body_node_id();
477                    let signature = ast_module.procedure_signature(proc_idx).cloned();
478                    let export = LibraryExport { node, name: fqn.clone(), signature };
479                    exports.insert(fqn, export);
480                }
481            }
482
483            exports
484        };
485
486        let (mast_forest, id_remappings) = mast_forest_builder.build();
487        for (_proc_name, export) in exports.iter_mut() {
488            if let Some(&new_node_id) = id_remappings.get(&export.node) {
489                export.node = new_node_id;
490            }
491        }
492
493        Ok(Library::new(mast_forest.into(), exports)?)
494    }
495
496    /// Compiles the provided module into a [`Program`]. The resulting program can be executed on
497    /// Miden VM.
498    ///
499    /// # Errors
500    ///
501    /// Returns an error if parsing or compilation of the specified program fails, or if the source
502    /// doesn't have an entrypoint.
503    pub fn assemble_program(mut self, source: impl Parse) -> Result<Program, Report> {
504        let options = ParseOptions {
505            kind: ModuleKind::Executable,
506            warnings_as_errors: self.warnings_as_errors,
507            path: Some(LibraryPath::from(LibraryNamespace::Exec)),
508        };
509
510        let program = source.parse_with_options(&self.source_manager, options)?;
511        assert!(program.is_executable());
512
513        // Recompute graph with executable module, and start compiling
514        let module_index = self.linker.link([program])?[0];
515
516        // Find the executable entrypoint Note: it is safe to use `unwrap_ast()` here, since this is
517        // the module we just added, which is in AST representation.
518        let entrypoint = self.linker[module_index]
519            .unwrap_ast()
520            .index_of(|p| p.is_main())
521            .map(|index| GlobalProcedureIndex { module: module_index, index })
522            .ok_or(SemanticAnalysisError::MissingEntrypoint)?;
523
524        // Compile the linked module graph rooted at the entrypoint
525        let staticlibs = self.linker.libraries().filter_map(|lib| {
526            if matches!(lib.kind, LinkLibraryKind::Static) {
527                Some(lib.library.as_ref())
528            } else {
529                None
530            }
531        });
532        let mut mast_forest_builder = MastForestBuilder::new(staticlibs)?;
533
534        mast_forest_builder
535            .merge_advice_map(self.linker[module_index].unwrap_ast().advice_map())?;
536
537        self.compile_subgraph(entrypoint, &mut mast_forest_builder)?;
538        let entry_node_id = mast_forest_builder
539            .get_procedure(entrypoint)
540            .expect("compilation succeeded but root not found in cache")
541            .body_node_id();
542
543        // in case the node IDs changed, update the entrypoint ID to the new value
544        let (mast_forest, id_remappings) = mast_forest_builder.build();
545        let entry_node_id = *id_remappings.get(&entry_node_id).unwrap_or(&entry_node_id);
546
547        Ok(Program::with_kernel(
548            mast_forest.into(),
549            entry_node_id,
550            self.linker.kernel().clone(),
551        ))
552    }
553
554    /// Compile the uncompiled procedure in the linked module graph which are members of the
555    /// subgraph rooted at `root`, placing them in the MAST forest builder once compiled.
556    ///
557    /// Returns an error if any of the provided Miden Assembly is invalid.
558    fn compile_subgraph(
559        &mut self,
560        root: GlobalProcedureIndex,
561        mast_forest_builder: &mut MastForestBuilder,
562    ) -> Result<(), Report> {
563        let mut worklist: Vec<GlobalProcedureIndex> = self
564            .linker
565            .topological_sort_from_root(root)
566            .map_err(|cycle| {
567                let iter = cycle.into_node_ids();
568                let mut nodes = Vec::with_capacity(iter.len());
569                for node in iter {
570                    let module = self.linker[node.module].path();
571                    let proc = self.linker.get_procedure_unsafe(node);
572                    nodes.push(format!("{}::{}", module, proc.name()));
573                }
574                LinkerError::Cycle { nodes: nodes.into() }
575            })?
576            .into_iter()
577            .filter(|&gid| self.linker.get_procedure_unsafe(gid).is_ast())
578            .collect();
579
580        assert!(!worklist.is_empty());
581
582        self.process_graph_worklist(&mut worklist, mast_forest_builder)
583    }
584
585    /// Compiles all procedures in the `worklist`.
586    fn process_graph_worklist(
587        &mut self,
588        worklist: &mut Vec<GlobalProcedureIndex>,
589        mast_forest_builder: &mut MastForestBuilder,
590    ) -> Result<(), Report> {
591        // Process the topological ordering in reverse order (bottom-up), so that
592        // each procedure is compiled with all of its dependencies fully compiled
593        while let Some(procedure_gid) = worklist.pop() {
594            // If we have already compiled this procedure, do not recompile
595            if let Some(proc) = mast_forest_builder.get_procedure(procedure_gid) {
596                self.linker.register_procedure_root(procedure_gid, proc.mast_root())?;
597                continue;
598            }
599            // Fetch procedure metadata from the graph
600            let module = match &self.linker[procedure_gid.module] {
601                ModuleLink::Ast(ast_module) => ast_module,
602                // Note: if the containing module is in `Info` representation, there is nothing to
603                // compile.
604                ModuleLink::Info(_) => continue,
605            };
606
607            let export = &module[procedure_gid.index];
608            match export {
609                Export::Procedure(proc) => {
610                    let num_locals = proc.num_locals();
611                    let name = QualifiedProcedureName {
612                        span: proc.span(),
613                        module: module.path().clone(),
614                        name: proc.name().clone(),
615                    };
616                    let pctx = ProcedureContext::new(
617                        procedure_gid,
618                        name,
619                        proc.visibility(),
620                        proc.signature().cloned(),
621                        module.is_in_kernel(),
622                        self.source_manager.clone(),
623                    )
624                    .with_num_locals(num_locals)
625                    .with_span(proc.span());
626
627                    // Compile this procedure
628                    let procedure = self.compile_procedure(pctx, mast_forest_builder)?;
629                    // TODO: if a re-exported procedure with the same MAST root had been previously
630                    // added to the builder, this will result in unreachable nodes added to the
631                    // MAST forest. This is because while we won't insert a duplicate node for the
632                    // procedure body node itself, all nodes that make up the procedure body would
633                    // be added to the forest.
634
635                    // Cache the compiled procedure
636                    self.linker.register_procedure_root(procedure_gid, procedure.mast_root())?;
637                    mast_forest_builder.insert_procedure(procedure_gid, procedure)?;
638                },
639                Export::Alias(proc_alias) => {
640                    let name = QualifiedProcedureName {
641                        span: proc_alias.span(),
642                        module: module.path().clone(),
643                        name: proc_alias.name().clone(),
644                    };
645                    let mut pctx = ProcedureContext::new(
646                        procedure_gid,
647                        name,
648                        ast::Visibility::Public,
649                        None,
650                        module.is_in_kernel(),
651                        self.source_manager.clone(),
652                    )
653                    .with_span(proc_alias.span());
654
655                    let ResolvedProcedure { node: proc_node_id, signature, .. } = self
656                        .resolve_target(
657                            InvokeKind::ProcRef,
658                            &proc_alias.target().into(),
659                            &pctx,
660                            mast_forest_builder,
661                        )?;
662
663                    pctx.set_signature(signature);
664
665                    let proc_mast_root =
666                        mast_forest_builder.get_mast_node(proc_node_id).unwrap().digest();
667
668                    let procedure = pctx.into_procedure(proc_mast_root, proc_node_id);
669
670                    // Make the MAST root available to all dependents
671                    self.linker.register_procedure_root(procedure_gid, proc_mast_root)?;
672                    mast_forest_builder.insert_procedure(procedure_gid, procedure)?;
673                },
674            }
675        }
676
677        Ok(())
678    }
679
680    /// Compiles a single Miden Assembly procedure to its MAST representation.
681    fn compile_procedure(
682        &self,
683        mut proc_ctx: ProcedureContext,
684        mast_forest_builder: &mut MastForestBuilder,
685    ) -> Result<Procedure, Report> {
686        // Make sure the current procedure context is available during codegen
687        let gid = proc_ctx.id();
688
689        let num_locals = proc_ctx.num_locals();
690
691        let wrapper_proc = self.linker.get_procedure_unsafe(gid);
692        let proc = wrapper_proc.unwrap_ast().unwrap_procedure();
693        let proc_body_id = if num_locals > 0 {
694            // For procedures with locals, we need to update fmp register before and after the
695            // procedure body is executed. Specifically:
696            // - to allocate procedure locals we need to increment fmp by the number of locals
697            //   (rounded up to the word size), and
698            // - to deallocate procedure locals we need to decrement it by the same amount.
699            let locals_frame = Felt::from(num_locals.next_multiple_of(WORD_SIZE as u16));
700            let wrapper = BodyWrapper {
701                prologue: vec![Operation::Push(locals_frame), Operation::FmpUpdate],
702                epilogue: vec![Operation::Push(-locals_frame), Operation::FmpUpdate],
703            };
704            self.compile_body(proc.iter(), &mut proc_ctx, Some(wrapper), mast_forest_builder)?
705        } else {
706            self.compile_body(proc.iter(), &mut proc_ctx, None, mast_forest_builder)?
707        };
708
709        let proc_body_node = mast_forest_builder
710            .get_mast_node(proc_body_id)
711            .expect("no MAST node for compiled procedure");
712        Ok(proc_ctx.into_procedure(proc_body_node.digest(), proc_body_id))
713    }
714
715    fn compile_body<'a, I>(
716        &self,
717        body: I,
718        proc_ctx: &mut ProcedureContext,
719        wrapper: Option<BodyWrapper>,
720        mast_forest_builder: &mut MastForestBuilder,
721    ) -> Result<MastNodeId, Report>
722    where
723        I: Iterator<Item = &'a ast::Op>,
724    {
725        use ast::Op;
726
727        let mut body_node_ids: Vec<MastNodeId> = Vec::new();
728        let mut block_builder = BasicBlockBuilder::new(wrapper, mast_forest_builder);
729
730        for op in body {
731            match op {
732                Op::Inst(inst) => {
733                    if let Some(node_id) =
734                        self.compile_instruction(inst, &mut block_builder, proc_ctx)?
735                    {
736                        if let Some(basic_block_id) = block_builder.make_basic_block()? {
737                            body_node_ids.push(basic_block_id);
738                        } else if let Some(decorator_ids) = block_builder.drain_decorators() {
739                            block_builder
740                                .mast_forest_builder_mut()
741                                .append_before_enter(node_id, &decorator_ids);
742                        }
743
744                        body_node_ids.push(node_id);
745                    }
746                },
747
748                Op::If { then_blk, else_blk, span } => {
749                    if let Some(basic_block_id) = block_builder.make_basic_block()? {
750                        body_node_ids.push(basic_block_id);
751                    }
752
753                    let then_blk = self.compile_body(
754                        then_blk.iter(),
755                        proc_ctx,
756                        None,
757                        block_builder.mast_forest_builder_mut(),
758                    )?;
759                    let else_blk = self.compile_body(
760                        else_blk.iter(),
761                        proc_ctx,
762                        None,
763                        block_builder.mast_forest_builder_mut(),
764                    )?;
765
766                    let split_node_id =
767                        block_builder.mast_forest_builder_mut().ensure_split(then_blk, else_blk)?;
768                    if let Some(decorator_ids) = block_builder.drain_decorators() {
769                        block_builder
770                            .mast_forest_builder_mut()
771                            .append_before_enter(split_node_id, &decorator_ids)
772                    }
773
774                    // Add an assembly operation decorator to the if node in debug mode.
775                    if self.in_debug_mode() {
776                        let location = proc_ctx.source_manager().location(*span).ok();
777                        let context_name = proc_ctx.name().to_string();
778                        let num_cycles = 0;
779                        let op = "if.true".to_string();
780                        let should_break = false;
781                        let op =
782                            AssemblyOp::new(location, context_name, num_cycles, op, should_break);
783                        let decorator_id = block_builder
784                            .mast_forest_builder_mut()
785                            .ensure_decorator(Decorator::AsmOp(op))?;
786                        block_builder
787                            .mast_forest_builder_mut()
788                            .append_before_enter(split_node_id, &[decorator_id]);
789                    }
790
791                    body_node_ids.push(split_node_id);
792                },
793
794                Op::Repeat { count, body, .. } => {
795                    if let Some(basic_block_id) = block_builder.make_basic_block()? {
796                        body_node_ids.push(basic_block_id);
797                    }
798
799                    let repeat_node_id = self.compile_body(
800                        body.iter(),
801                        proc_ctx,
802                        None,
803                        block_builder.mast_forest_builder_mut(),
804                    )?;
805
806                    if let Some(decorator_ids) = block_builder.drain_decorators() {
807                        // Attach the decorators before the first instance of the repeated node
808                        let mut first_repeat_node =
809                            block_builder.mast_forest_builder_mut()[repeat_node_id].clone();
810                        first_repeat_node.append_before_enter(&decorator_ids);
811                        let first_repeat_node_id = block_builder
812                            .mast_forest_builder_mut()
813                            .ensure_node(first_repeat_node)?;
814
815                        body_node_ids.push(first_repeat_node_id);
816                        for _ in 0..(*count - 1) {
817                            body_node_ids.push(repeat_node_id);
818                        }
819                    } else {
820                        for _ in 0..*count {
821                            body_node_ids.push(repeat_node_id);
822                        }
823                    }
824                },
825
826                Op::While { body, span } => {
827                    if let Some(basic_block_id) = block_builder.make_basic_block()? {
828                        body_node_ids.push(basic_block_id);
829                    }
830
831                    let loop_node_id = {
832                        let loop_body_node_id = self.compile_body(
833                            body.iter(),
834                            proc_ctx,
835                            None,
836                            block_builder.mast_forest_builder_mut(),
837                        )?;
838                        block_builder.mast_forest_builder_mut().ensure_loop(loop_body_node_id)?
839                    };
840                    if let Some(decorator_ids) = block_builder.drain_decorators() {
841                        block_builder
842                            .mast_forest_builder_mut()
843                            .append_before_enter(loop_node_id, &decorator_ids)
844                    }
845
846                    // Add an assembly operation decorator to the loop node in debug mode.
847                    if self.in_debug_mode() {
848                        let location = proc_ctx.source_manager().location(*span).ok();
849                        let context_name = proc_ctx.name().to_string();
850                        let num_cycles = 0;
851                        let op = "while.true".to_string();
852                        let should_break = false;
853                        let op =
854                            AssemblyOp::new(location, context_name, num_cycles, op, should_break);
855                        let decorator_id = block_builder
856                            .mast_forest_builder_mut()
857                            .ensure_decorator(Decorator::AsmOp(op))?;
858                        block_builder
859                            .mast_forest_builder_mut()
860                            .append_before_enter(loop_node_id, &[decorator_id]);
861                    }
862
863                    body_node_ids.push(loop_node_id);
864                },
865            }
866        }
867
868        let maybe_post_decorators: Option<Vec<DecoratorId>> =
869            match block_builder.try_into_basic_block()? {
870                BasicBlockOrDecorators::BasicBlock(basic_block_id) => {
871                    body_node_ids.push(basic_block_id);
872                    None
873                },
874                BasicBlockOrDecorators::Decorators(decorator_ids) => {
875                    // the procedure body ends with a list of decorators
876                    Some(decorator_ids)
877                },
878                BasicBlockOrDecorators::Nothing => None,
879            };
880
881        let procedure_body_id = if body_node_ids.is_empty() {
882            // We cannot allow only decorators in a procedure body, since decorators don't change
883            // the MAST digest of a node. Hence, two empty procedures with different decorators
884            // would look the same to the `MastForestBuilder`.
885            if maybe_post_decorators.is_some() {
886                return Err(Report::new(
887                    RelatedLabel::error("invalid procedure")
888                        .with_labeled_span(
889                            proc_ctx.span(),
890                            "body must contain at least one instruction if it has decorators",
891                        )
892                        .with_source_file(
893                            proc_ctx.source_manager().get(proc_ctx.span().source_id()).ok(),
894                        ),
895                ));
896            }
897
898            mast_forest_builder.ensure_block(vec![Operation::Noop], None)?
899        } else {
900            mast_forest_builder.join_nodes(body_node_ids)?
901        };
902
903        // Make sure that any post decorators are added at the end of the procedure body
904        if let Some(post_decorator_ids) = maybe_post_decorators {
905            mast_forest_builder.append_after_exit(procedure_body_id, &post_decorator_ids);
906        }
907
908        Ok(procedure_body_id)
909    }
910
911    /// Resolves the specified target to the corresponding procedure root [`MastNodeId`].
912    ///
913    /// If no [`MastNodeId`] exists for that procedure root, we wrap the root in an
914    /// [`crate::mast::ExternalNode`], and return the resulting [`MastNodeId`].
915    pub(super) fn resolve_target(
916        &self,
917        kind: InvokeKind,
918        target: &InvocationTarget,
919        proc_ctx: &ProcedureContext,
920        mast_forest_builder: &mut MastForestBuilder,
921    ) -> Result<ResolvedProcedure, Report> {
922        let caller = CallerInfo {
923            span: target.span(),
924            module: proc_ctx.id().module,
925            kind,
926        };
927        let resolved = self.linker.resolve_target(&caller, target)?;
928        match resolved {
929            ResolvedTarget::Phantom(mast_root) => {
930                let node = self.ensure_valid_procedure_mast_root(
931                    kind,
932                    target.span(),
933                    mast_root,
934                    mast_forest_builder,
935                )?;
936                Ok(ResolvedProcedure { node, signature: None })
937            },
938            ResolvedTarget::Exact { gid } | ResolvedTarget::Resolved { gid, .. } => {
939                match mast_forest_builder.get_procedure(gid) {
940                    Some(proc) => Ok(ResolvedProcedure {
941                        node: proc.body_node_id(),
942                        signature: proc.signature(),
943                    }),
944                    // We didn't find the procedure in our current MAST forest. We still need to
945                    // check if it exists in one of a library dependency.
946                    None => match self.linker.get_procedure_unsafe(gid) {
947                        ProcedureLink::Info(p) => {
948                            let node = self.ensure_valid_procedure_mast_root(
949                                kind,
950                                target.span(),
951                                p.digest,
952                                mast_forest_builder,
953                            )?;
954                            Ok(ResolvedProcedure { node, signature: p.signature.clone() })
955                        },
956                        ProcedureLink::Ast(_) => panic!(
957                            "AST procedure {gid:?} exists in the linker, but not in the MastForestBuilder"
958                        ),
959                    },
960                }
961            },
962        }
963    }
964
965    /// Verifies the validity of the MAST root as a procedure root hash, and adds it to the forest.
966    ///
967    /// If the root is present in the vendored MAST, its subtree is copied. Otherwise an
968    /// external node is added to the forest.
969    fn ensure_valid_procedure_mast_root(
970        &self,
971        kind: InvokeKind,
972        span: SourceSpan,
973        mast_root: Word,
974        mast_forest_builder: &mut MastForestBuilder,
975    ) -> Result<MastNodeId, Report> {
976        // Get the procedure from the assembler
977        let current_source_file = self.source_manager.get(span.source_id()).ok();
978
979        // If the procedure is cached and is a system call, ensure that the call is valid.
980        match mast_forest_builder.find_procedure_by_mast_root(&mast_root) {
981            Some(proc) if matches!(kind, InvokeKind::SysCall) => {
982                // Verify if this is a syscall, that the callee is a kernel procedure
983                //
984                // NOTE: The assembler is expected to know the full set of all kernel
985                // procedures at this point, so if we can't identify the callee as a
986                // kernel procedure, it is a definite error.
987                if !proc.visibility().is_syscall() {
988                    assert!(
989                        !proc.visibility().is_syscall(),
990                        "linker failed to validate syscall correctly: {}",
991                        Report::new(LinkerError::InvalidSysCallTarget {
992                            span,
993                            source_file: current_source_file,
994                            callee: proc.fully_qualified_name().clone().into(),
995                        })
996                    );
997                }
998                let maybe_kernel_path = proc.path();
999                let module = self.linker.find_module(maybe_kernel_path).unwrap_or_else(|| {
1000                    panic!(
1001                        "linker failed to validate syscall correctly: {}",
1002                        Report::new(LinkerError::InvalidSysCallTarget {
1003                            span,
1004                            source_file: current_source_file.clone(),
1005                            callee: proc.fully_qualified_name().clone().into(),
1006                        })
1007                    )
1008                });
1009                // Note: this module is guaranteed to be of AST variant, since we have the
1010                // AST of a procedure contained in it (i.e. `proc`). Hence, it must be that
1011                // the entire module is in AST representation as well.
1012                if !module.unwrap_ast().is_kernel() {
1013                    panic!(
1014                        "linker failed to validate syscall correctly: {}",
1015                        Report::new(LinkerError::InvalidSysCallTarget {
1016                            span,
1017                            source_file: current_source_file.clone(),
1018                            callee: proc.fully_qualified_name().clone().into(),
1019                        })
1020                    )
1021                }
1022            },
1023            Some(_) | None => (),
1024        }
1025
1026        mast_forest_builder.ensure_external_link(mast_root)
1027    }
1028}
1029
1030// HELPERS
1031// ================================================================================================
1032
1033/// Contains a set of operations which need to be executed before and after a sequence of AST
1034/// nodes (i.e., code body).
1035pub(crate) struct BodyWrapper {
1036    pub prologue: Vec<Operation>,
1037    pub epilogue: Vec<Operation>,
1038}
1039
1040pub(super) struct ResolvedProcedure {
1041    pub node: MastNodeId,
1042    pub signature: Option<Arc<FunctionType>>,
1043}