microlp 0.2.11

A fast linear programming solver library.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
use crate::solver::EPS;
use crate::sparse::{Error, Perm, ScatteredVec, SparseMat, TriangleMat};
use std::cmp::Ordering;

#[derive(Clone)]
pub struct LUFactors {
    lower: TriangleMat,
    upper: TriangleMat,
    row_perm: Option<Perm>,
    col_perm: Option<Perm>,
}

#[derive(Clone, Debug)]
pub struct ScratchSpace {
    rhs: ScatteredVec,
    dense_rhs: Vec<f64>,
    mark_nonzero: MarkNonzero,
}

impl ScratchSpace {
    pub fn with_capacity(n: usize) -> ScratchSpace {
        ScratchSpace {
            rhs: ScatteredVec::empty(n),
            dense_rhs: vec![0.0; n],
            mark_nonzero: MarkNonzero::with_capacity(n),
        }
    }

    pub(crate) fn clear_sparse(&mut self, size: usize) {
        self.rhs.clear_and_resize(size);
        self.mark_nonzero.clear_and_resize(size);
    }
}

impl std::fmt::Debug for LUFactors {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        writeln!(f, "L:\n{:?}", self.lower)?;
        writeln!(f, "U:\n{:?}", self.upper)?;
        writeln!(
            f,
            "row_perm.new2orig: {:?}",
            self.row_perm.as_ref().map(|p| &p.new2orig)
        )?;
        writeln!(
            f,
            "col_perm.new2orig: {:?}",
            self.col_perm.as_ref().map(|p| &p.new2orig)
        )?;
        Ok(())
    }
}

impl LUFactors {
    pub fn nnz(&self) -> usize {
        self.lower.nondiag.nnz() + self.upper.nondiag.nnz() + self.lower.cols()
    }

    pub fn solve_dense(&self, rhs: &mut [f64], scratch: &mut ScratchSpace) {
        scratch.dense_rhs.resize(rhs.len(), 0.0);

        if let Some(row_perm) = &self.row_perm {
            for (i, rhs_el) in rhs.iter().enumerate() {
                scratch.dense_rhs[row_perm.orig2new[i]] = *rhs_el;
            }
        } else {
            scratch.dense_rhs.copy_from_slice(rhs);
        }

        tri_solve_dense(&self.lower, Triangle::Lower, &mut scratch.dense_rhs);
        tri_solve_dense(&self.upper, Triangle::Upper, &mut scratch.dense_rhs);

        if let Some(col_perm) = &self.col_perm {
            for i in 0..rhs.len() {
                rhs[col_perm.new2orig[i]] = scratch.dense_rhs[i];
            }
        } else {
            rhs.copy_from_slice(&scratch.dense_rhs);
        }
    }

    pub fn solve(&self, rhs: &mut ScatteredVec, scratch: &mut ScratchSpace) {
        if let Some(row_perm) = &self.row_perm {
            scratch.rhs.clear();
            for &i in &rhs.nonzero {
                let new_i = row_perm.orig2new[i];
                scratch.rhs.nonzero.push(new_i);
                scratch.rhs.is_nonzero[new_i] = true;
                scratch.rhs.values[new_i] = rhs.values[i];
            }
        } else {
            std::mem::swap(&mut scratch.rhs, rhs);
        }

        tri_solve_sparse(&self.lower, scratch);
        tri_solve_sparse(&self.upper, scratch);

        if let Some(col_perm) = &self.col_perm {
            rhs.clear();
            for &i in &scratch.rhs.nonzero {
                let new_i = col_perm.new2orig[i];
                rhs.nonzero.push(new_i);
                rhs.is_nonzero[new_i] = true;
                rhs.values[new_i] = scratch.rhs.values[i];
            }
        } else {
            std::mem::swap(rhs, &mut scratch.rhs);
        }
    }

    pub fn transpose(&self) -> LUFactors {
        LUFactors {
            lower: self.upper.transpose(),
            upper: self.lower.transpose(),
            row_perm: self.col_perm.clone(),
            col_perm: self.row_perm.clone(),
        }
    }
}

pub fn lu_factorize<'a>(
    size: usize,
    get_col: impl Fn(usize) -> (&'a [usize], &'a [f64]),
    stability_coeff: f64,
    scratch: &mut ScratchSpace,
) -> Result<LUFactors, Error> {
    // Implementation of the Gilbert-Peierls algorithm:
    //
    // Gilbert, John R., and Tim Peierls. "Sparse partial pivoting in time
    // proportional to arithmetic operations." SIAM Journal on Scientific and
    // Statistical Computing 9.5 (1988): 862-874.
    //
    // https://ecommons.cornell.edu/bitstream/handle/1813/6623/86-783.pdf

    let mat_nnz = (0..size).map(|c| get_col(c).0.len()).sum::<usize>();
    trace!(
        "lu_factorize: starting, matrix size: {}, nnz: {} (excess: {})",
        size,
        mat_nnz,
        mat_nnz - size,
    );

    let col_perm = super::ordering::order_simple(size, |c| get_col(c).0);

    let mut orig_row2elt_count = vec![0; size];
    for col_rows in (0..size).map(|c| get_col(c).0) {
        for &orig_r in col_rows {
            orig_row2elt_count[orig_r] += 1;
        }
    }

    scratch.clear_sparse(size);

    let mut lower = SparseMat::new(size);
    let mut upper = SparseMat::new(size);
    let mut upper_diag = Vec::with_capacity(size);

    let mut new2orig_row = (0..size).collect::<Vec<_>>();
    let mut orig2new_row = new2orig_row.clone();

    for i_col in 0..size {
        let mat_col = get_col(col_perm.new2orig[i_col]);

        // Solve the equation L'_j * x = a_j (x will be in scratch.rhs).
        // L'_j is a sq. matrix with the first j columns of L
        // and columns of identity matrix after j.
        // Part of x above the diagonal (in the new row indices) is the column of U
        // and part of x below the diagonal divided by the pivot value is the column of L

        scratch.rhs.set(mat_col.0.iter().copied().zip(mat_col.1));

        scratch.mark_nonzero.run(
            &mut scratch.rhs,
            |new_i| lower.col_rows(new_i),
            |new_i| new_i < i_col,
            |orig_r| orig2new_row[orig_r],
        );

        // At this point all future nonzero positions of scratch.rhs are marked
        // and the order in which variables depend on each other is determined.
        // rev() because DFS returns vertices in reverse topological order.
        for &orig_i in scratch.mark_nonzero.visited.iter().rev() {
            // values[orig_i] is already fully calculated, diag coeff = 1.0.
            let new_i = orig2new_row[orig_i];
            if new_i < i_col {
                let x_val = scratch.rhs.values[orig_i];
                for (orig_r, coeff) in lower.col_iter(new_i) {
                    scratch.rhs.values[orig_r] -= x_val * coeff;
                }
            }
        }

        // Next we choose a pivot among values of x below the diagonal.
        // Pivoting by choosing the max element is good for stability,
        // but bad for sparseness, so we do threshold pivoting instead.

        let pivot_orig_r = {
            let mut max_abs = 0.0;
            for &orig_r in &scratch.rhs.nonzero {
                if orig2new_row[orig_r] < i_col {
                    continue;
                }

                let abs = f64::abs(scratch.rhs.values[orig_r]);
                if abs > max_abs {
                    max_abs = abs;
                }
            }

            if max_abs < EPS {
                return Err(Error::SingularMatrix);
            }

            assert!(max_abs.is_normal());

            // Choose among eligible pivot rows one with the least elements.
            // Gilbert-Peierls suggest to choose row with least elements *to the right*,
            // but it yielded poor results. Our heuristic is not a huge improvement either,
            // but at least we are less dependent on initial row ordering.
            let mut best_orig_r = None;
            let mut best_elt_count = None;
            for &orig_r in &scratch.rhs.nonzero {
                if orig2new_row[orig_r] < i_col {
                    continue;
                }

                if f64::abs(scratch.rhs.values[orig_r]) >= stability_coeff * max_abs {
                    let elt_count = orig_row2elt_count[orig_r];
                    if best_elt_count.is_none() || best_elt_count.unwrap() > elt_count {
                        best_orig_r = Some(orig_r);
                        best_elt_count = Some(elt_count);
                    }
                }
            }
            best_orig_r.unwrap()
        };

        let pivot_val = scratch.rhs.values[pivot_orig_r];

        {
            // Keep track of row permutations.
            let row = i_col;
            let orig_row = new2orig_row[row];
            let pivot_row = orig2new_row[pivot_orig_r];
            new2orig_row.swap(row, pivot_row);
            orig2new_row.swap(orig_row, pivot_orig_r);
        }

        // Gather the values of x into lower and upper matrices.

        for &orig_r in &scratch.rhs.nonzero {
            let val = scratch.rhs.values[orig_r];

            if val == 0.0 {
                continue;
            }

            let new_r = orig2new_row[orig_r];
            match new_r.cmp(&i_col) {
                Ordering::Less => upper.push(new_r, val),
                Ordering::Equal => upper_diag.push(pivot_val),
                Ordering::Greater => lower.push(orig_r, val / pivot_val),
            }
        }

        upper.seal_column();
        lower.seal_column();
    }

    // permute rows of lower to "new" indices.
    for i_col in 0..lower.cols() {
        for r in lower.col_rows_mut(i_col) {
            *r = orig2new_row[*r];
        }
    }

    let lower_nnz = lower.nnz();
    let upper_nnz = upper.nnz();
    trace!(
        "lu_factorize: done, lower nnz: {} (excess: {}), upper nnz: {} (excess: {}), additional fill-in: {}",
        lower_nnz + size,
        lower_nnz,
        upper_nnz + size,
        upper_nnz,
        (lower_nnz + upper_nnz + size) as isize - mat_nnz as isize,
    );

    let res = LUFactors {
        lower: TriangleMat {
            nondiag: lower,
            diag: None,
        },
        upper: TriangleMat {
            nondiag: upper,
            diag: Some(upper_diag),
        },
        row_perm: Some(Perm {
            orig2new: orig2new_row,
            new2orig: new2orig_row,
        }),
        col_perm: Some(col_perm),
    };

    Ok(res)
}

#[derive(Clone, Debug)]
struct MarkNonzero {
    dfs_stack: Vec<DfsStep>,
    is_visited: Vec<bool>,
    visited: Vec<usize>, // in reverse topological order
}

#[derive(Clone, Debug)]
struct DfsStep {
    orig_i: usize,
    cur_child: usize,
}

impl MarkNonzero {
    fn with_capacity(n: usize) -> MarkNonzero {
        MarkNonzero {
            dfs_stack: Vec::with_capacity(n),
            is_visited: vec![false; n],
            visited: vec![],
        }
    }

    fn clear(&mut self) {
        assert!(self.dfs_stack.is_empty());
        for &i in &self.visited {
            self.is_visited[i] = false;
        }
        self.visited.clear();
    }

    fn clear_and_resize(&mut self, n: usize) {
        self.clear();
        self.dfs_stack.reserve(n);
        self.is_visited.resize(n, false);
    }

    // compute the non-zero elements of the result by dfs traversal
    fn run<'a>(
        &mut self,
        rhs: &mut ScatteredVec,
        get_children: impl Fn(usize) -> &'a [usize] + 'a,
        filter: impl Fn(usize) -> bool,
        orig2new_row: impl Fn(usize) -> usize,
    ) {
        self.clear();

        for &orig_r in &rhs.nonzero {
            let new_r = orig2new_row(orig_r);
            if !filter(new_r) {
                continue;
            }
            if self.is_visited[orig_r] {
                continue;
            }

            self.dfs_stack.push(DfsStep {
                orig_i: orig_r,
                cur_child: 0,
            });
            while !self.dfs_stack.is_empty() {
                let cur_step = self.dfs_stack.last_mut().unwrap();
                let new_i = orig2new_row(cur_step.orig_i);
                let children = if filter(new_i) {
                    get_children(new_i)
                } else {
                    &[]
                };
                if !self.is_visited[cur_step.orig_i] {
                    self.is_visited[cur_step.orig_i] = true;
                } else {
                    cur_step.cur_child += 1;
                }

                while cur_step.cur_child < children.len() {
                    let child_orig_r = children[cur_step.cur_child];
                    if !self.is_visited[child_orig_r] {
                        break;
                    }
                    cur_step.cur_child += 1;
                }

                if cur_step.cur_child < children.len() {
                    let i_child = cur_step.cur_child;
                    self.dfs_stack.push(DfsStep {
                        orig_i: children[i_child],
                        cur_child: 0,
                    });
                } else {
                    self.visited.push(cur_step.orig_i);
                    self.dfs_stack.pop();
                }
            }
        }

        for &i in &self.visited {
            if !rhs.is_nonzero[i] {
                rhs.is_nonzero[i] = true;
                rhs.nonzero.push(i)
            }
        }
    }
}

enum Triangle {
    Lower,
    Upper,
}

fn tri_solve_dense(tri_mat: &TriangleMat, triangle: Triangle, rhs: &mut [f64]) {
    assert_eq!(tri_mat.rows(), rhs.len());
    match triangle {
        Triangle::Lower => {
            for col in 0..tri_mat.cols() {
                tri_solve_process_col(tri_mat, col, rhs);
            }
        }

        Triangle::Upper => {
            for col in (0..tri_mat.cols()).rev() {
                tri_solve_process_col(tri_mat, col, rhs);
            }
        }
    };
}

/// rhs is passed via scratch.visited, scratch.values.
fn tri_solve_sparse(tri_mat: &TriangleMat, scratch: &mut ScratchSpace) {
    assert_eq!(tri_mat.rows(), scratch.rhs.len());

    // compute the non-zero elements of the result by dfs traversal
    scratch.mark_nonzero.run(
        &mut scratch.rhs,
        |col| tri_mat.nondiag.col_rows(col),
        |_| true,
        |orig_i| orig_i,
    );

    // solve for the non-zero values into dense workspace.
    // rev() because DFS returns vertices in reverse topological order.
    for &col in scratch.mark_nonzero.visited.iter().rev() {
        tri_solve_process_col(tri_mat, col, &mut scratch.rhs.values);
    }
}

fn tri_solve_process_col(tri_mat: &TriangleMat, col: usize, rhs: &mut [f64]) {
    // all other variables in this row (multiplied by their coeffs)
    // are already subtracted from rhs[col].
    let x_val = if let Some(diag) = tri_mat.diag.as_ref() {
        rhs[col] / diag[col]
    } else {
        rhs[col]
    };

    rhs[col] = x_val;
    for (r, &coeff) in tri_mat.nondiag.col_iter(col) {
        rhs[r] -= x_val * coeff;
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::helpers::{assert_matrix_eq, to_dense, to_sparse};
    use sprs::{CsMat, CsVec, TriMat};

    fn init() {
        let _ = env_logger::builder().is_test(true).try_init();
    }

    fn mat_from_triplets(rows: usize, cols: usize, triplets: &[(usize, usize, f64)]) -> CsMat<f64> {
        let mut mat = TriMat::with_capacity((rows, cols), triplets.len());
        for (r, c, val) in triplets {
            mat.add_triplet(*r, *c, *val);
        }
        mat.to_csc()
    }

    #[test]
    fn lu_simple() {
        init();
        let mat = mat_from_triplets(
            3,
            4,
            &[
                (0, 1, 2.0),
                (0, 0, 2.0),
                (0, 2, 123.0),
                (1, 2, 456.0),
                (1, 3, 1.0),
                (2, 1, 4.0),
                (2, 0, 3.0),
                (2, 2, 789.0),
                (2, 3, 1.0),
            ],
        );

        let mut scratch = ScratchSpace::with_capacity(mat.rows());
        let lu = lu_factorize(
            mat.rows(),
            |c| mat.outer_view([1, 0, 3][c]).unwrap().into_raw_storage(),
            0.9,
            &mut scratch,
        )
        .unwrap();
        let lu_transp = lu.transpose();

        let l_nondiag_ref = [
            vec![0.0, 0.0, 0.0],
            vec![0.5, 0.0, 0.0],
            vec![0.0, 0.0, 0.0],
        ];
        assert_matrix_eq(&lu.lower.nondiag.to_csmat(), &l_nondiag_ref);
        assert_eq!(lu.lower.diag, None);

        let u_nondiag_ref = [
            vec![0.0, 3.0, 1.0],
            vec![0.0, 0.0, -0.5],
            vec![0.0, 0.0, 0.0],
        ];
        let u_diag_ref = [4.0, 0.5, 1.0];
        assert_matrix_eq(&lu.upper.nondiag.to_csmat(), &u_nondiag_ref);
        assert_eq!(lu.upper.diag.as_ref().unwrap(), &u_diag_ref);

        assert_eq!(lu.row_perm.as_ref().unwrap().new2orig, &[2, 0, 1]);
        assert_eq!(lu.col_perm.as_ref().unwrap().new2orig, &[0, 1, 2]);

        {
            let mut rhs_dense = [6.0, 3.0, 13.0];
            lu.solve_dense(&mut rhs_dense, &mut scratch);
            assert_eq!(&rhs_dense, &[1.0, 2.0, 3.0]);
        }

        {
            let mut rhs_dense_t = [14.0, 11.0, 5.0];
            lu_transp.solve_dense(&mut rhs_dense_t, &mut scratch);
            assert_eq!(&rhs_dense_t, &[1.0, 2.0, 3.0]);
        }

        {
            let mut rhs = ScatteredVec::empty(3);
            rhs.set(to_sparse(&[0.0, -1.0, 0.0]).iter());
            lu.solve(&mut rhs, &mut scratch);
            assert_eq!(to_dense(&rhs.to_csvec()), vec![1.0, -1.0, -1.0]);
        }

        {
            let mut rhs = ScatteredVec::empty(3);
            rhs.set(to_sparse(&[0.0, -1.0, 1.0]).iter());
            lu_transp.solve(&mut rhs, &mut scratch);
            assert_eq!(to_dense(&rhs.to_csvec()), vec![-2.0, 0.0, 1.0]);
        }
    }

    #[test]
    fn lu_singular() {
        init();
        let size = 3;

        {
            let symbolically_singular = mat_from_triplets(
                size,
                size,
                &[(0, 0, 1.0), (1, 0, 1.0), (1, 1, 2.0), (1, 2, 3.0)],
            );

            let mut scratch = ScratchSpace::with_capacity(size);
            let err = lu_factorize(
                size,
                |c| {
                    symbolically_singular
                        .outer_view(c)
                        .unwrap()
                        .into_raw_storage()
                },
                0.9,
                &mut scratch,
            );
            assert_eq!(err.unwrap_err(), Error::SingularMatrix);
        }

        {
            let numerically_singular = mat_from_triplets(
                size,
                size,
                &[
                    (0, 0, 1.0),
                    (1, 0, 1.0),
                    (1, 1, 2.0),
                    (1, 2, 3.0),
                    (2, 0, 2.0),
                    (2, 1, 2.0),
                    (2, 2, 3.0),
                ],
            );

            let mut scratch = ScratchSpace::with_capacity(size);
            let err = lu_factorize(
                size,
                |c| {
                    numerically_singular
                        .outer_view(c)
                        .unwrap()
                        .into_raw_storage()
                },
                0.9,
                &mut scratch,
            );
            assert_eq!(err.unwrap_err(), Error::SingularMatrix);
        }
    }

    #[test]
    fn lu_rand() {
        init();
        let size = 10;

        let mut rng = rand_pcg::Pcg64::seed_from_u64(12345);
        use rand::prelude::*;

        let mut mat = TriMat::new((size, size));
        for r in 0..size {
            for c in 0..size {
                if rng.gen_range(0..2) == 0 {
                    mat.add_triplet(r, c, rng.gen_range(0.0..1.0));
                }
            }
        }
        let mat: CsMat<f64> = mat.to_csc();

        let mut scratch = ScratchSpace::with_capacity(mat.rows());

        // TODO: random permutation?
        let cols: Vec<_> = (0..size).collect();

        let lu = lu_factorize(
            size,
            |c| mat.outer_view(cols[c]).unwrap().into_raw_storage(),
            0.1,
            &mut scratch,
        )
        .unwrap();
        let lu_transp = lu.transpose();

        let multiplied = &lu.lower.to_csmat() * &lu.upper.to_csmat();
        assert!(multiplied.is_csc());
        for (i, &c) in cols.iter().enumerate() {
            let permuted = {
                let mut is = vec![];
                let mut vs = vec![];
                for (i, &val) in mat.outer_view(c).unwrap().iter() {
                    is.push(lu.row_perm.as_ref().unwrap().orig2new[i]);
                    vs.push(val);
                }
                CsVec::new_from_unsorted(size, is, vs).unwrap()
            };
            let diff = &multiplied
                .outer_view(lu.col_perm.as_ref().unwrap().orig2new[i])
                .unwrap()
                - &permuted;
            assert!(diff.norm(1.0) < 1e-5);
        }

        let sparse_rhs = {
            let mut res = CsVec::empty(size);
            for i in 0..size {
                if rng.gen_range(0..3) == 0 {
                    res.append(i, rng.gen_range(0.0..1.0));
                }
            }
            res
        };

        {
            let mut rhs = ScatteredVec::empty(size);
            rhs.set(sparse_rhs.iter());
            lu.solve(&mut rhs, &mut scratch);
            let diff = &sparse_rhs - &(&mat * &rhs.to_csvec());
            assert!(diff.norm(1.0) < 1e-5);
        }

        {
            let mut rhs_t = ScatteredVec::empty(size);
            rhs_t.set(sparse_rhs.iter());
            lu_transp.solve(&mut rhs_t, &mut scratch);
            let diff = &sparse_rhs - &(&mat.transpose_view() * &rhs_t.to_csvec());
            assert!(diff.norm(1.0) < 1e-5);
        }
    }
}