A minimal automatic differentiation library. Just for fun...
All code are in a single file (`src/mgrad.rs`) to easily copy-paste into other projects.
```rust
use mgrad::nn;
fn main() {
let x = nn::variable(1);
let y = x.sin() + nn::constant(1);
let y = (x.pow(2) * y).ln();
y.backward(1);
// y = ln(x^2 * (sin(x) + 1))
// dy/dx should be ~ 2.29341
println!("The gradient of y=ln(x^2 * (sin(x) + 1)) at x=1 is: {:?}", x.grad);
}
```
Run with `cargo doc --open` to see the documentation.
More examples can be found in the `examples` folder.