metaldb 1.0.0

Persistent storage implementation based on RocksDB.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
use std::{
    cell::RefCell,
    collections::{BTreeMap, HashMap},
    fmt, iter,
    iter::{Iterator as StdIterator, Peekable},
    marker::PhantomData,
    mem,
    ops::{Bound, Deref, DerefMut},
    rc::Rc,
    result::Result as StdResult,
};

use crate::{
    validation::assert_valid_name_component,
    views::{AsReadonly, ChangesIter, IndexesPool, RawAccess, ResolvedAddress, View},
    Error, Result,
};

/// Changes related to a specific `View`.
#[derive(Debug, Default, Clone)]
pub struct ViewChanges {
    /// Changes within the view.
    pub(super) data: BTreeMap<Vec<u8>, Change>,
    /// Was the view cleared as a part of changes?
    is_cleared: bool,
}

impl ViewChanges {
    fn new() -> Self {
        Self::default()
    }

    pub fn is_cleared(&self) -> bool {
        self.is_cleared
    }

    pub fn clear(&mut self) {
        self.data.clear();
        self.is_cleared = true;
    }

    pub(crate) fn into_data(self) -> BTreeMap<Vec<u8>, Change> {
        self.data
    }

    /// Returns a value for the specified key, or an `Err(_)` if the value should be determined
    /// by the underlying snapshot.
    pub fn get(&self, key: &[u8]) -> StdResult<Option<Vec<u8>>, ()> {
        if let Some(change) = self.data.get(key) {
            return Ok(match *change {
                Change::Put(ref v) => Some(v.clone()),
                Change::Delete => None,
            });
        }
        if self.is_cleared() {
            return Ok(None);
        }
        Err(())
    }

    /// Returns whether the view contains the specified `key`. An `Err(_)` is returned if this
    /// is determined by the underlying snapshot.
    pub fn contains(&self, key: &[u8]) -> StdResult<bool, ()> {
        if let Some(change) = self.data.get(key) {
            return Ok(match *change {
                Change::Put(..) => true,
                Change::Delete => false,
            });
        }

        if self.is_cleared() {
            return Ok(false);
        }
        Err(())
    }
}

/// Cell holding changes for a specific view. Mutable view borrows take changes out
/// of the `Option` and unwraps `Rc` into inner data, while immutable borrows clone inner `Rc`.
type ChangesCell = Option<Rc<ViewChanges>>;

#[derive(Debug, Default)]
struct WorkingPatch {
    changes: RefCell<HashMap<ResolvedAddress, ChangesCell>>,
}

#[derive(Debug)]
enum WorkingPatchRef<'a> {
    Borrowed(&'a WorkingPatch),
    Owned(Rc<Fork>),
}

impl WorkingPatchRef<'_> {
    fn patch(&self) -> &WorkingPatch {
        match self {
            WorkingPatchRef::Borrowed(patch) => patch,
            WorkingPatchRef::Owned(ref fork) => &fork.working_patch,
        }
    }
}

#[derive(Debug)]
pub struct ChangesRef<'a> {
    inner: Rc<ViewChanges>,
    _lifetime: PhantomData<&'a ()>,
}

impl Drop for ChangesRef<'_> {
    fn drop(&mut self) {
        // Do nothing. The implementation is required to make `View`s based on `ChangesRef`
        // drop before a mutable operation is performed on a fork (e.g., it's converted
        // into a patch).
    }
}

impl Deref for ChangesRef<'_> {
    type Target = ViewChanges;

    fn deref(&self) -> &ViewChanges {
        &*self.inner
    }
}

/// `RefMut`, but dumber.
#[derive(Debug)]
pub struct ChangesMut<'a> {
    parent: WorkingPatchRef<'a>,
    key: ResolvedAddress,
    changes: Option<Rc<ViewChanges>>,
}

impl Deref for ChangesMut<'_> {
    type Target = ViewChanges;

    fn deref(&self) -> &ViewChanges {
        // `.unwrap()` is safe: `changes` can be equal to `None` only when
        // the instance is being dropped.
        self.changes.as_ref().unwrap()
    }
}

impl DerefMut for ChangesMut<'_> {
    fn deref_mut(&mut self) -> &mut ViewChanges {
        // `.unwrap()`s are safe:
        //
        // - `changes` can be equal to `None` only when the instance is being dropped.
        // - We know that `Rc` with the changes is unique.
        Rc::get_mut(self.changes.as_mut().unwrap()).unwrap()
    }
}

impl Drop for ChangesMut<'_> {
    fn drop(&mut self) {
        let mut change_map = self.parent.patch().changes.borrow_mut();
        let changes = change_map.get_mut(&self.key).unwrap_or_else(|| {
            panic!("insertion point for changes disappeared at {:?}", self.key);
        });

        debug_assert!(changes.is_none(), "edit conflict at {:?}", self.key);
        *changes = self.changes.take();
    }
}

impl WorkingPatch {
    /// Creates a new empty patch.
    fn new() -> Self {
        Self {
            changes: RefCell::new(HashMap::new()),
        }
    }

    /// Takes a cell with changes for a specific `View` out of the patch.
    /// The returned cell is guaranteed to contain an `Rc` with an exclusive ownership.
    fn take_view_changes(&self, address: &ResolvedAddress) -> ChangesCell {
        let view_changes = {
            let mut changes = self.changes.borrow_mut();
            let view_changes = changes.get_mut(address).map(Option::take);
            view_changes.unwrap_or_else(|| {
                changes
                    .entry(address.clone())
                    .or_insert_with(|| Some(Rc::new(ViewChanges::new())))
                    .take()
            })
        };

        if let Some(ref view_changes) = view_changes {
            assert!(
                Rc::strong_count(view_changes) == 1,
                "Attempting to borrow {:?} mutably while it's borrowed immutably",
                address
            );
        } else {
            panic!("Multiple mutable borrows of an index at {:?}", address);
        }
        view_changes
    }

    /// Clones changes for a specific `View` from the patch. Panics if the changes
    /// are mutably borrowed.
    fn clone_view_changes(&self, address: &ResolvedAddress) -> Rc<ViewChanges> {
        let mut changes = self.changes.borrow_mut();
        // Get changes for the specified address.
        let changes: &ChangesCell = changes
            .entry(address.clone())
            .or_insert_with(|| Some(Rc::new(ViewChanges::new())));

        changes
            .as_ref()
            .unwrap_or_else(|| {
                // If the `changes` are `None`, this means they have been taken by a previous call
                // to `take_view_changes` and not yet returned.
                panic!(
                    "Attempting to borrow {:?} immutably while it's borrowed mutably",
                    address
                );
            })
            .clone()
    }

    // TODO: verify that this method updates `Change`s already in the `Patch` [ECR-2834]
    fn merge_into(self, patch: &mut Patch) {
        for (address, changes) in self.changes.into_inner() {
            // Check that changes are not borrowed mutably (in this case, the corresponding
            // `ChangesCell` is `None`).
            //
            // Both this and the following `panic`s cannot feasibly be triggered,
            // since the only place where this method is called (`Fork::flush()`) borrows
            // `Fork` mutably; this forces both mutable and immutable index borrows to be dropped,
            // since they borrow `Fork` immutably.
            let changes = changes.unwrap_or_else(|| {
                panic!(
                    "changes are still mutably borrowed at address {:?}",
                    address
                );
            });
            // Check that changes are not borrowed immutably (in this case, there is another
            // `Rc<_>` pointer to changes somewhere).
            let changes = Rc::try_unwrap(changes).unwrap_or_else(|_| {
                panic!(
                    "changes are still immutably borrowed at address {:?}",
                    address
                );
            });

            // The patch may already contain changes related to the `address`. If it does,
            // we extend these changes with the new changes (relying on the fact that
            // newer changes override older ones), unless the view was cleared (in which case,
            // the old changes do not matter and should be forgotten).
            let patch_changes = patch
                .changes
                .entry(address)
                .or_insert_with(ViewChanges::new);
            if changes.is_cleared() {
                *patch_changes = changes;
            } else {
                patch_changes.data.extend(changes.data);
            }
        }
    }
}

/// A generalized iterator over the storage views.
pub type Iter<'a> = Box<dyn Iterator + 'a>;

/// An enum that represents a type of change made to some key in the storage.
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(test, derive(Eq, Hash))] // needed for patch equality comparison
pub enum Change {
    /// Put the specified value into the storage for the corresponding key.
    Put(Vec<u8>),
    /// Delete a value from the storage for the corresponding key.
    Delete,
}

/// A combination of a database snapshot and changes on top of it.
///
/// A `Fork` provides both immutable and mutable operations over the database by implementing
/// the [`RawAccessMut`] trait. Like [`Snapshot`], `Fork` provides read isolation.
/// When mutable operations are applied to a fork, the subsequent reads act as if the changes
/// are applied to the database; in reality, these changes are accumulated in memory.
///
/// To apply the changes to the database, you need to convert a `Fork` into a [`Patch`] using
/// [`into_patch`] and then atomically [`merge`] it into the database. If two
/// conflicting forks are merged into a database, this can lead to an inconsistent state. If you
/// need to consistently apply several sets of changes to the same data, the next fork should be
/// created after the previous fork has been merged.
///
/// `Fork` also supports checkpoints ([`flush`] and [`rollback`] methods), which allows
/// rolling back the latest changes. A checkpoint is created automatically after calling
/// the `flush` method.
///
/// ```
/// # use metaldb::{access::CopyAccessExt, Database, TemporaryDB};
/// let db = TemporaryDB::new();
/// let mut fork = db.fork();
/// fork.get_list("list").extend(vec![1_u32, 2]);
/// fork.flush();
/// fork.get_list("list").push(3_u32);
/// fork.rollback();
/// // The changes after the latest `flush()` are now forgotten.
/// let list = fork.get_list::<_, u32>("list");
/// assert_eq!(list.len(), 2);
/// # assert_eq!(list.iter().collect::<Vec<_>>(), vec![1, 2]);
/// ```
///
/// In order to convert a fork into `&dyn Snapshot` presentation, convert it into a `Patch`
/// and use a reference to it (`Patch` implements `Snapshot`). Using `<Fork as RawAccess>::snapshot`
/// for this purpose is logically incorrect and may lead to hard-to-debug errors.
///
/// # Borrow checking
///
/// It is possible to create only one instance of index with the specified `IndexAddress` based on a
/// single fork. If an additional instance is requested, the code will panic in runtime.
/// Hence, obtaining indexes from a `Fork` functions similarly to [`RefCell::borrow_mut()`].
///
/// For example the code below will panic at runtime.
///
/// ```rust,should_panic
/// # use metaldb::{access::CopyAccessExt, TemporaryDB, ListIndex, Database};
/// let db = TemporaryDB::new();
/// let fork = db.fork();
/// let index = fork.get_list::<_, u8>("index");
/// // This code will panic at runtime.
/// let index2 = fork.get_list::<_, u8>("index");
/// ```
///
/// To enable immutable / shared references to indexes, you may use [`readonly`] method:
///
/// ```
/// # use metaldb::{access::CopyAccessExt, TemporaryDB, ListIndex, Database};
/// let db = TemporaryDB::new();
/// let fork = db.fork();
/// fork.get_list::<_, u8>("index").extend(vec![1, 2, 3]);
///
/// let readonly = fork.readonly();
/// let index = readonly.get_list::<_, u8>("index");
/// // Works fine.
/// let index2 = readonly.get_list::<_, u8>("index");
/// ```
///
/// It is impossible to mutate index contents having a readonly access to the fork; this is
/// checked by the Rust type system.
///
/// Shared references work like `RefCell::borrow()`; it is a runtime error to try to obtain
/// a shared reference to an index if there is an exclusive reference to the same index,
/// and vice versa.
///
/// [`RawAccessMut`]: access/trait.RawAccessMut.html
/// [`Snapshot`]: trait.Snapshot.html
/// [`Patch`]: struct.Patch.html
/// [`into_patch`]: #method.into_patch
/// [`merge`]: trait.Database.html#tymethod.merge
/// [`commit`]: #method.commit
/// [`flush`]: #method.flush
/// [`rollback`]: #method.rollback
/// [`readonly`]: #method.readonly
/// [`RefCell::borrow_mut()`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html#method.borrow_mut
#[derive(Debug)]
pub struct Fork {
    patch: Patch,
    working_patch: WorkingPatch,
}

/// A set of changes that can be atomically applied to a `Database`.
///
/// This set can contain changes from multiple indexes. Changes can be read from the `Patch`
/// using its `RawAccess` implementation.
///
/// # Examples
///
/// ```
/// # use metaldb::{
/// #     access::CopyAccessExt, Database, Patch, TemporaryDB,
/// # };
/// let db = TemporaryDB::new();
/// let fork = db.fork();
/// fork.get_list("list").extend(vec![1_i32, 2, 3]);
/// let patch: Patch = fork.into_patch();
/// // The patch contains changes recorded in the fork.
/// let list = patch.get_list::<_, i32>("list");
/// assert_eq!(list.len(), 3);
/// ```
#[derive(Debug)]
pub struct Patch {
    snapshot: Box<dyn Snapshot>,
    changes: HashMap<ResolvedAddress, ViewChanges>,
}

pub(super) struct ForkIter<'a, T: StdIterator> {
    snapshot: Iter<'a>,
    changes: Option<Peekable<T>>,
}

#[derive(Debug, PartialEq, Eq)]
enum NextIterValue {
    Stored,
    Replaced,
    Inserted,
    Deleted,
    MissDeleted,
    Finished,
}

/// Low-level storage backend implementing a collection of named key-value stores
/// (aka column families).
///
/// A `Database` instance is shared across different threads, so it must be `Sync` and `Send`.
///
/// There is no way to directly interact with data in the database; use [`snapshot`], [`fork`]
/// and [`merge`] methods for indirect interaction. See [the crate-level documentation](index.html)
/// for more details.
///
/// Note that `Database` effectively has [interior mutability][interior-mut];
/// `merge` and `merge_sync` methods take a shared reference to the database (`&self`)
/// rather than an exclusive one (`&mut self`). This means that the following code compiles:
///
/// ```
/// use metaldb::{access::CopyAccessExt, Database, TemporaryDB};
///
/// // not declared as `mut db`!
/// let db: Box<dyn Database> = Box::new(TemporaryDB::new());
/// let fork = db.fork();
/// {
///     let mut list = fork.get_list("list");
///     list.push(42_u64);
/// }
/// db.merge(fork.into_patch()).unwrap();
/// ```
///
/// # Merge Workflow
///
/// The user of a `Database` is responsible to ensure that forks are either created and merged
/// sequentially or do not contain overlapping changes. By sequential creation we mean the following
/// workflow:
///
/// ```
/// # use metaldb::{Database, TemporaryDB};
/// let db = TemporaryDB::new();
/// let first_fork = db.fork();
/// // Perform some operations on `first_fork`...
/// db.merge(first_fork.into_patch()).unwrap();
/// let second_fork = db.fork();
/// // Perform some operations on `second_fork`...
/// db.merge(second_fork.into_patch()).unwrap();
/// ```
///
/// In contrast, this is a non-sequential workflow:
///
/// ```
/// # use metaldb::{Database, TemporaryDB};
/// let db = TemporaryDB::new();
/// let first_fork = db.fork();
/// // Perform some operations on `first_fork`...
/// let second_fork = db.fork();
/// // Perform some operations on `second_fork`...
/// db.merge(first_fork.into_patch()).unwrap();
/// db.merge(second_fork.into_patch()).unwrap();
/// ```
///
/// In a non-sequential workflow, `first_fork` and `second_fork` **must not** contain overlapping
/// changes (i.e., changes to the same index). If they do, the result of the merge may be
/// unpredictable to the programmer and may break database invariants, e.g., that the length
/// of an index is equal to the number of elements obtained by iterating over the index:
///
/// ```
/// // NEVER USE THIS PATTERN!
/// # use metaldb::{access::CopyAccessExt, Database, TemporaryDB};
/// let db = TemporaryDB::new();
/// let first_fork = db.fork();
/// first_fork.get_list("list").extend(vec![1, 2, 3]);
/// let second_fork = db.fork();
/// second_fork.get_list("list").push(4);
/// db.merge(first_fork.into_patch()).unwrap();
/// db.merge(second_fork.into_patch()).unwrap();
///
/// let snapshot = db.snapshot();
/// let list = snapshot.get_list::<_, i32>("list");
/// assert_eq!(list.len(), 1);
/// assert_eq!(list.iter().collect::<Vec<_>>(), vec![4, 2, 3]);
/// // ^-- Oops, we got two phantom elements!
/// ```
///
/// It is advised to create / merge patches sequentially whenever possible. The concurrent
/// workflow should only be used for minor changes, for which the proof that a patch does not overlap
/// with concurrent patches is tractable.
///
/// [`snapshot`]: #tymethod.snapshot
/// [`fork`]: #method.fork
/// [`merge`]: #tymethod.merge
/// [interior-mut]: https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
pub trait Database: Send + Sync + 'static {
    /// Creates a new snapshot of the database from its current state.
    fn snapshot(&self) -> Box<dyn Snapshot>;

    /// Creates a new fork of the database from its current state.
    fn fork(&self) -> Fork {
        Fork {
            patch: Patch {
                snapshot: self.snapshot(),
                changes: HashMap::new(),
            },
            working_patch: WorkingPatch::new(),
        }
    }

    /// Atomically applies a sequence of patch changes to the database.
    ///
    /// Note that this method may be called concurrently from different threads, the
    /// onus to guarantee atomicity is on the implementor of the trait.
    ///
    /// # Logical Safety
    ///
    /// Merging several patches which are not created sequentially and contain
    /// overlapping changes may result in the unexpected storage state and lead to the hard-to debug
    /// errors, storage leaks etc. See the [trait docs](#merge-workflow) for more details.
    ///
    /// # Errors
    ///
    /// If this method encounters any form of I/O or other error during merging, an error variant
    /// will be returned. In case of an error, the method guarantees no changes are applied to
    /// the database.
    fn merge(&self, patch: Patch) -> Result<()>;

    /// Atomically applies a sequence of patch changes to the database with fsync.
    ///
    /// Note that this method may be called concurrently from different threads, the
    /// onus to guarantee atomicity is on the implementor of the trait.
    ///
    /// # Logical Safety
    ///
    /// Merging several patches which are not created sequentially and contain
    /// overlapping changes may result in the unexpected storage state and lead to the hard-to debug
    /// errors, storage leaks etc. See the [trait docs](#merge-workflow) for more details.
    ///
    /// # Errors
    ///
    /// If this method encounters any form of I/O or other error during merging, an error variant
    /// will be returned. In case of an error, the method guarantees no changes are applied to
    /// the database.
    fn merge_sync(&self, patch: Patch) -> Result<()>;
}

/// Extension trait for `Database`.
pub trait DatabaseExt: Database {
    /// Merges a patch into the database and creates a backup patch that reverses all the merged
    /// changes.
    ///
    /// # Safety
    ///
    /// It is logically unsound to merge other patches to the database between the `merge_with_backup`
    /// call and merging the backup patch. This may lead to merge artifacts and an inconsistent
    /// database state.
    ///
    /// An exception to this rule is creating backups for several merged patches
    /// and then applying backups in the reverse order:
    ///
    /// ```
    /// # use metaldb::{access::{Access, CopyAccessExt}, Database, DatabaseExt, TemporaryDB};
    /// let db = TemporaryDB::new();
    /// let fork = db.fork();
    /// fork.get_list("list").push(1_u32);
    /// let backup1 = db.merge_with_backup(fork.into_patch()).unwrap();
    /// let fork = db.fork();
    /// fork.get_list("list").push(2_u32);
    /// let backup2 = db.merge_with_backup(fork.into_patch()).unwrap();
    /// let fork = db.fork();
    /// fork.get_list("list").extend(vec![3_u32, 4]);
    /// let backup3 = db.merge_with_backup(fork.into_patch()).unwrap();
    ///
    /// fn enumerate_list<A: Access + Copy>(view: A) -> Vec<u32> {
    ///     view.get_list("list").iter().collect()
    /// }
    ///
    /// assert_eq!(enumerate_list(&db.snapshot()), vec![1, 2, 3, 4]);
    /// // Rollback the most recent merge.
    /// db.merge(backup3).unwrap();
    /// assert_eq!(enumerate_list(&db.snapshot()), vec![1, 2]);
    /// // ...Then the penultimate merge.
    /// db.merge(backup2).unwrap();
    /// assert_eq!(enumerate_list(&db.snapshot()), vec![1]);
    /// // ...Then the oldest one.
    /// db.merge(backup1).unwrap();
    /// assert!(enumerate_list(&db.snapshot()).is_empty());
    /// ```
    ///
    /// # Performance notes
    ///
    /// This method is linear w.r.t. patch size (i.e., the total number of changes in it) plus,
    /// for each clear operation, the corresponding index size before clearing. As such,
    /// the method may be inappropriate to use with large patches.
    ///
    /// # Errors
    ///
    /// Returns an error in the same situations as `Database::merge()`.
    fn merge_with_backup(&self, patch: Patch) -> Result<Patch> {
        let snapshot = self.snapshot();
        let mut rev_changes = HashMap::with_capacity(patch.changes.len());

        for (name, changes) in &patch.changes {
            let mut view_changes = changes.data.clone();
            for (key, change) in &mut view_changes {
                *change = snapshot.get(name, key).map_or(Change::Delete, Change::Put);
            }

            // Remember all elements that will be deleted.
            if changes.is_cleared() {
                let mut iter = snapshot.iter(name, &[]);
                while let Some((key, value)) = iter.next() {
                    view_changes.insert(key.to_vec(), Change::Put(value.to_vec()));
                }
            }

            rev_changes.insert(
                name.clone(),
                ViewChanges {
                    data: view_changes,
                    is_cleared: false,
                },
            );
        }

        self.merge(patch)?;
        Ok(Patch {
            snapshot: self.snapshot(),
            changes: rev_changes,
        })
    }
}

impl<T: Database> DatabaseExt for T {}

/// A read-only snapshot of a storage backend.
///
/// A `Snapshot` instance is an immutable representation of a certain storage state.
/// It provides read isolation, so consistency is guaranteed even if the data in
/// the database changes between reads.
pub trait Snapshot: Send + Sync + 'static {
    /// Returns a value corresponding to the specified address and key as a raw vector of bytes,
    /// or `None` if it does not exist.
    fn get(&self, name: &ResolvedAddress, key: &[u8]) -> Option<Vec<u8>>;

    /// Returns a value for each key corresponding to the specified address and this key as a raw vector of bytes,
    /// or `None` if it does not exist.
    fn multi_get<'a>(
        &self,
        name: &ResolvedAddress,
        keys: &'a mut dyn iter::Iterator<Item = &'a [u8]>,
    ) -> Vec<Option<Vec<u8>>>;

    /// Returns `true` if the snapshot contains a value for the specified address and key.
    ///
    /// The default implementation checks existence of the value using [`get`](#tymethod.get).
    fn contains(&self, name: &ResolvedAddress, key: &[u8]) -> bool {
        self.get(name, key).is_some()
    }

    /// Returns an iterator over the entries of the snapshot in ascending order starting from
    /// the specified key. The iterator element type is `(&[u8], &[u8])`.
    fn iter(&self, name: &ResolvedAddress, from: &[u8]) -> Iter<'_>;
}

/// A trait that defines a streaming iterator over storage view entries. Unlike
/// the standard [`Iterator`](https://doc.rust-lang.org/std/iter/trait.Iterator.html)
/// trait, `Iterator` in `metaldb` is low-level and, therefore, operates with bytes.
pub trait Iterator {
    /// Advances the iterator and returns a reference to the next key and value.
    fn next(&mut self) -> Option<(&[u8], &[u8])>;

    /// Returns a reference to the current key and value without advancing the iterator.
    fn peek(&mut self) -> Option<(&[u8], &[u8])>;
}

impl Patch {
    /// Iterates over changes in this patch.
    pub(crate) fn into_changes(self) -> HashMap<ResolvedAddress, ViewChanges> {
        self.changes
    }
}

impl Snapshot for Patch {
    fn get(&self, name: &ResolvedAddress, key: &[u8]) -> Option<Vec<u8>> {
        self.changes
            .get(name)
            .map_or(Err(()), |changes| changes.get(key))
            // At this point, `Err(_)` signifies that we need to retrieve data from the snapshot.
            .unwrap_or_else(|()| self.snapshot.get(name, key))
    }

    fn multi_get<'a>(
        &self,
        name: &ResolvedAddress,
        keys: &'a mut dyn iter::Iterator<Item = &'a [u8]>,
    ) -> Vec<Option<Vec<u8>>> {
        let changes = self.changes.get(name);
        let size = {
            let (min, max) = keys.size_hint();

            max.unwrap_or(min)
        };

        let (mut res, db_keys) = keys.into_iter().enumerate().fold(
            (Vec::with_capacity(size), Vec::with_capacity(size)),
            |(mut res, mut db_keys), (idx, key)| {
                if let Some(Ok(item)) = changes.map(|changes| changes.get(key)) {
                    res.push(item);
                } else {
                    res.push(None);
                    db_keys.push((idx, key));
                }

                (res, db_keys)
            },
        );

        let db_res = self
            .snapshot
            .multi_get(name, &mut db_keys.iter().map(|(_, key)| *key));

        for ((idx, _), item) in db_keys.into_iter().zip(db_res) {
            res[idx] = item;
        }

        res
    }

    fn contains(&self, name: &ResolvedAddress, key: &[u8]) -> bool {
        self.changes
            .get(name)
            .map_or(Err(()), |changes| changes.contains(key))
            // At this point, `Err(_)` signifies that we need to retrieve data from the snapshot.
            .unwrap_or_else(|()| self.snapshot.contains(name, key))
    }

    fn iter(&self, name: &ResolvedAddress, from: &[u8]) -> Iter<'_> {
        let maybe_changes = self.changes.get(name);
        let changes_iter = maybe_changes.map(|changes| {
            changes
                .data
                .range::<[u8], _>((Bound::Included(from), Bound::Unbounded))
        });

        let is_cleared = maybe_changes.map_or(false, ViewChanges::is_cleared);
        if is_cleared {
            // Ignore all changes from the snapshot.
            Box::new(ChangesIter::new(changes_iter.unwrap()))
        } else {
            Box::new(ForkIter::new(self.snapshot.iter(name, from), changes_iter))
        }
    }
}

impl RawAccess for &'_ Patch {
    type Changes = ();

    fn snapshot(&self) -> &dyn Snapshot {
        *self as &dyn Snapshot
    }

    fn changes(&self, _address: &ResolvedAddress) -> Self::Changes {}
}

impl AsReadonly for &'_ Patch {
    type Readonly = Self;

    fn as_readonly(&self) -> Self::Readonly {
        self
    }
}

impl Fork {
    /// Finalizes all changes that were made after previous execution of the `flush` method.
    /// If no `flush` method had been called before, finalizes all changes that were
    /// made after creation of `Fork`.
    pub fn flush(&mut self) {
        let working_patch = mem::replace(&mut self.working_patch, WorkingPatch::new());
        working_patch.merge_into(&mut self.patch);
    }

    /// Finishes a migration of indexes with the specified prefix.
    pub(crate) fn flush_migration(&mut self, prefix: &str) {
        assert_valid_name_component(prefix);

        // Mutable `self` reference ensures that no indexes are instantiated in the client code.
        self.flush(); // Flushing is necessary to keep `self.patch` up to date.

        let removed_addrs = IndexesPool::new(&*self).flush_migration(prefix);
        for addr in removed_addrs {
            self.patch.changes.entry(addr).or_default().clear();
        }
    }

    /// Rolls back all changes that were made after the latest execution
    /// of the `flush` method.
    pub fn rollback(&mut self) {
        self.working_patch = WorkingPatch::new();
    }

    /// Rolls back the migration with the specified name. This will remove all indexes
    /// within the migration.
    pub(crate) fn rollback_migration(&mut self, prefix: &str) {
        assert_valid_name_component(prefix);
        self.flush();
        let removed_addrs = IndexesPool::new(&*self).rollback_migration(prefix);
        for addr in &removed_addrs {
            self.patch.changes.remove(addr);
        }
    }

    /// Converts the fork into `Patch` consuming the fork instance.
    pub fn into_patch(mut self) -> Patch {
        self.flush();
        self.patch
    }

    /// Returns a readonly wrapper around the fork. Indexes created based on the readonly
    /// version cannot be modified; on the other hand, it is possible to have multiple
    /// copies of an index at the same time.
    pub fn readonly(&self) -> ReadonlyFork<'_> {
        ReadonlyFork(self)
    }
}

impl From<Patch> for Fork {
    /// Creates a fork based on the provided `patch` and `snapshot`.
    ///
    /// Note: using created fork to modify data already present in `patch` may lead
    /// to an inconsistent database state. Hence, this method is useful only if you
    /// are sure that the fork and `patch` interacted with different indexes.
    fn from(patch: Patch) -> Self {
        Self {
            patch,
            working_patch: WorkingPatch::new(),
        }
    }
}

impl<'a> RawAccess for &'a Fork {
    type Changes = ChangesMut<'a>;

    fn snapshot(&self) -> &dyn Snapshot {
        &self.patch
    }

    fn changes(&self, address: &ResolvedAddress) -> Self::Changes {
        let changes = self.working_patch.take_view_changes(address);
        ChangesMut {
            changes,
            key: address.clone(),
            parent: WorkingPatchRef::Borrowed(&self.working_patch),
        }
    }
}

impl RawAccess for Rc<Fork> {
    type Changes = ChangesMut<'static>;

    fn snapshot(&self) -> &dyn Snapshot {
        &self.patch
    }

    fn changes(&self, address: &ResolvedAddress) -> Self::Changes {
        let changes = self.working_patch.take_view_changes(address);
        ChangesMut {
            changes,
            key: address.clone(),
            parent: WorkingPatchRef::Owned(Self::clone(self)),
        }
    }
}

/// Readonly wrapper for a `Fork`.
///
/// This wrapper allows to read from index state from the fork
/// in a type-safe manner (it is impossible to accidentally modify data in the index), and
/// without encountering runtime errors when attempting to concurrently get the same index
/// more than once.
///
/// Since the wrapper borrows the `Fork` immutably, it is still possible to access indexes
/// in the fork directly. In this scenario, the caller should be careful that `ReadonlyFork`
/// does not access the same indexes as the original `Fork`: this will result in a runtime
/// error (sort of like attempting both an exclusive and a shared borrow from a `RefCell`
/// or `RwLock`).
///
/// # Examples
///
/// ```
/// # use metaldb::{access::CopyAccessExt, Database, ReadonlyFork, TemporaryDB};
/// let db = TemporaryDB::new();
/// let fork = db.fork();
/// fork.get_list("list").push(1_u32);
/// let readonly: ReadonlyFork<'_> = fork.readonly();
/// let list = readonly.get_list::<_, u32>("list");
/// assert_eq!(list.get(0), Some(1));
/// let same_list = readonly.get_list::<_, u32>("list");
/// // ^-- Does not result in an error!
///
/// // Original fork is still accessible.
/// let mut map = fork.get_map("map");
/// map.put(&1_u32, "foo".to_string());
/// ```
///
/// There are no write methods in indexes instantiated from `ReadonlyFork`:
///
/// ```compile_fail
/// # use metaldb::{access::CopyAccessExt, Database, ReadonlyFork, TemporaryDB};
/// let db = TemporaryDB::new();
/// let fork = db.fork();
/// let readonly: ReadonlyFork<'_> = fork.readonly();
/// let mut list = readonly.get_list("list");
/// list.push(1_u32); // Won't compile: no `push` method in `ListIndex<ReadonlyFork, u32>`!
/// ```
#[derive(Debug, Clone, Copy)]
pub struct ReadonlyFork<'a>(&'a Fork);

impl<'a> AsReadonly for ReadonlyFork<'a> {
    type Readonly = Self;

    fn as_readonly(&self) -> Self::Readonly {
        *self
    }
}

impl<'a> AsReadonly for &'a Fork {
    type Readonly = ReadonlyFork<'a>;

    fn as_readonly(&self) -> Self::Readonly {
        ReadonlyFork(*self)
    }
}

impl<'a> RawAccess for ReadonlyFork<'a> {
    type Changes = ChangesRef<'a>;

    fn snapshot(&self) -> &dyn Snapshot {
        &self.0.patch
    }

    fn changes(&self, address: &ResolvedAddress) -> Self::Changes {
        ChangesRef {
            inner: self.0.working_patch.clone_view_changes(address),
            _lifetime: PhantomData,
        }
    }
}

/// Version of `ReadonlyFork` with a static lifetime. Can be produced from an `Rc<Fork>` using
/// the `AsReadonly` trait.
///
/// Beware that producing an instance increases the reference counter of the underlying fork.
/// If you need to obtain `Fork` from `Rc<Fork>` via [`Rc::try_unwrap`], make sure that all
/// `OwnedReadonlyFork` instances are dropped by this time.
///
/// [`Rc::try_unwrap`]: https://doc.rust-lang.org/std/rc/struct.Rc.html#method.try_unwrap
///
/// # Examples
///
/// ```
/// # use metaldb::{access::AccessExt, AsReadonly, Database, OwnedReadonlyFork, TemporaryDB};
/// # use std::rc::Rc;
/// let db = TemporaryDB::new();
/// let fork = Rc::new(db.fork());
/// fork.get_list("list").extend(vec![1_u32, 2, 3]);
/// let ro_fork: OwnedReadonlyFork = fork.as_readonly();
/// let list = ro_fork.get_list::<_, u32>("list");
/// assert_eq!(list.len(), 3);
/// ```
#[derive(Debug, Clone)]
pub struct OwnedReadonlyFork(Rc<Fork>);

impl RawAccess for OwnedReadonlyFork {
    type Changes = ChangesRef<'static>;

    fn snapshot(&self) -> &dyn Snapshot {
        &self.0.patch
    }

    fn changes(&self, address: &ResolvedAddress) -> Self::Changes {
        ChangesRef {
            inner: self.0.working_patch.clone_view_changes(address),
            _lifetime: PhantomData,
        }
    }
}

impl AsReadonly for OwnedReadonlyFork {
    type Readonly = Self;

    fn as_readonly(&self) -> Self::Readonly {
        self.clone()
    }
}

impl AsReadonly for Rc<Fork> {
    type Readonly = OwnedReadonlyFork;

    fn as_readonly(&self) -> Self::Readonly {
        OwnedReadonlyFork(self.clone())
    }
}

impl AsRef<dyn Snapshot> for dyn Snapshot {
    fn as_ref(&self) -> &dyn Snapshot {
        self
    }
}

impl Snapshot for Box<dyn Snapshot> {
    fn get(&self, name: &ResolvedAddress, key: &[u8]) -> Option<Vec<u8>> {
        self.as_ref().get(name, key)
    }

    fn multi_get<'a>(
        &self,
        name: &ResolvedAddress,
        keys: &'a mut dyn iter::Iterator<Item = &'a [u8]>,
    ) -> Vec<Option<Vec<u8>>> {
        self.as_ref().multi_get(name, keys)
    }

    fn contains(&self, name: &ResolvedAddress, key: &[u8]) -> bool {
        self.as_ref().contains(name, key)
    }

    fn iter(&self, name: &ResolvedAddress, from: &[u8]) -> Iter<'_> {
        self.as_ref().iter(name, from)
    }
}

impl<'a, T> ForkIter<'a, T>
where
    T: StdIterator<Item = (&'a Vec<u8>, &'a Change)>,
{
    pub fn new(snapshot: Iter<'a>, changes: Option<T>) -> Self {
        ForkIter {
            snapshot,
            changes: changes.map(StdIterator::peekable),
        }
    }

    #[allow(clippy::option_if_let_else)]
    fn step(&mut self) -> NextIterValue {
        use std::cmp::Ordering::{Equal, Greater, Less};

        if let Some(ref mut changes) = self.changes {
            match changes.peek() {
                Some(&(k, change)) => match self.snapshot.peek() {
                    Some((key, ..)) => match *change {
                        Change::Put(..) => match k[..].cmp(key) {
                            Equal => NextIterValue::Replaced,
                            Less => NextIterValue::Inserted,
                            Greater => NextIterValue::Stored,
                        },
                        Change::Delete => match k[..].cmp(key) {
                            Equal => NextIterValue::Deleted,
                            Less => NextIterValue::MissDeleted,
                            Greater => NextIterValue::Stored,
                        },
                    },
                    None => match *change {
                        Change::Put(..) => NextIterValue::Inserted,
                        Change::Delete => NextIterValue::MissDeleted,
                    },
                },
                None => match self.snapshot.peek() {
                    Some(..) => NextIterValue::Stored,
                    None => NextIterValue::Finished,
                },
            }
        } else {
            match self.snapshot.peek() {
                Some(..) => NextIterValue::Stored,
                None => NextIterValue::Finished,
            }
        }
    }
}

impl<'a, T> Iterator for ForkIter<'a, T>
where
    T: StdIterator<Item = (&'a Vec<u8>, &'a Change)>,
{
    fn next(&mut self) -> Option<(&[u8], &[u8])> {
        loop {
            match self.step() {
                NextIterValue::Stored => return self.snapshot.next(),
                NextIterValue::Replaced => {
                    self.snapshot.next();
                    return self.changes.as_mut().unwrap().next().map(|(key, change)| {
                        (
                            key.as_slice(),
                            match *change {
                                Change::Put(ref value) => value.as_slice(),
                                Change::Delete => unreachable!(),
                            },
                        )
                    });
                }
                NextIterValue::Inserted => {
                    return self.changes.as_mut().unwrap().next().map(|(key, change)| {
                        (
                            key.as_slice(),
                            match *change {
                                Change::Put(ref value) => value.as_slice(),
                                Change::Delete => unreachable!(),
                            },
                        )
                    });
                }
                NextIterValue::Deleted => {
                    self.changes.as_mut().unwrap().next();
                    self.snapshot.next();
                }
                NextIterValue::MissDeleted => {
                    self.changes.as_mut().unwrap().next();
                }
                NextIterValue::Finished => return None,
            }
        }
    }

    fn peek(&mut self) -> Option<(&[u8], &[u8])> {
        loop {
            match self.step() {
                NextIterValue::Stored => return self.snapshot.peek(),
                NextIterValue::Replaced | NextIterValue::Inserted => {
                    return self.changes.as_mut().unwrap().peek().map(|&(key, change)| {
                        (
                            key.as_slice(),
                            match *change {
                                Change::Put(ref value) => value.as_slice(),
                                Change::Delete => unreachable!(),
                            },
                        )
                    });
                }
                NextIterValue::Deleted => {
                    self.changes.as_mut().unwrap().next();
                    self.snapshot.next();
                }
                NextIterValue::MissDeleted => {
                    self.changes.as_mut().unwrap().next();
                }
                NextIterValue::Finished => return None,
            }
        }
    }
}

impl fmt::Debug for dyn Database {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Database").finish()
    }
}

impl fmt::Debug for dyn Snapshot {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Snapshot").finish()
    }
}

impl fmt::Debug for dyn Iterator {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Iterator").finish()
    }
}

/// The current `MerkleDB` data layout version.
pub const DB_VERSION: u8 = 0;
/// Database metadata address.
pub const DB_METADATA: &str = "__DB_METADATA__";
/// Version attribute name.
pub const VERSION_NAME: &str = "version";

/// This function checks that the given database is compatible with the current `MerkleDB` version.
pub fn check_database(db: &mut dyn Database) -> Result<()> {
    let fork = db.fork();
    {
        let addr = ResolvedAddress::system(DB_METADATA);
        let mut view = View::new(&fork, addr);
        if let Some(saved_version) = view.get::<_, u8>(VERSION_NAME) {
            if saved_version != DB_VERSION {
                return Err(Error::new(format!(
                    "Database version doesn't match: actual {}, expected {}",
                    saved_version, DB_VERSION
                )));
            }

            return Ok(());
        }
        view.put(VERSION_NAME, DB_VERSION);
    }
    db.merge(fork.into_patch())
}

#[cfg(test)]
mod tests {
    use super::{
        AsReadonly, Change, Database, DatabaseExt, Fork, OwnedReadonlyFork, Patch, Rc,
        ResolvedAddress, Snapshot, StdIterator, View,
    };
    use crate::{access::CopyAccessExt, TemporaryDB};

    use std::{collections::HashSet, iter};

    #[test]
    fn readonly_indexes_are_timely_dropped() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        fork.get_list("list").push(1_u64);
        {
            // The code without an additional scope must not compile.
            let _list = fork.readonly().get_list::<_, u64>("list");
        }
        fork.into_patch();
    }

    /// Asserts that a patch contains only the specified changes.
    fn check_patch<'a, I>(patch: &Patch, changes: I)
    where
        I: IntoIterator<Item = (&'a str, &'a [u8], Change)>,
    {
        let mut patch_set: HashSet<_> = HashSet::new();
        for (name, changes) in &patch.changes {
            for (key, value) in &changes.data {
                patch_set.insert((name.clone(), key.as_slice(), value.clone()));
            }
        }
        let expected_set: HashSet<_> = changes
            .into_iter()
            .map(|(name, key, change)| (ResolvedAddress::system(name), key, change))
            .collect();
        assert_eq!(patch_set, expected_set);
    }

    #[test]
    fn backup_data_is_correct() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        {
            let mut view = View::new(&fork, "foo");
            view.put(&vec![], vec![2]);
        }
        let backup = db.merge_with_backup(fork.into_patch()).unwrap();
        check_patch(&backup, vec![("foo", &[] as &[u8], Change::Delete)]);
        let snapshot = db.snapshot();
        assert_eq!(snapshot.get(&"foo".into(), &[]), Some(vec![2]));

        let fork = db.fork();
        {
            let mut view = View::new(&fork, "foo");
            view.put(&vec![], vec![3]);
            let mut view = View::new(&fork, "bar");
            view.put(&vec![1], vec![4]);
            let mut view = View::new(&fork, "bar2");
            view.put(&vec![5], vec![6]);
        }
        let backup = db.merge_with_backup(fork.into_patch()).unwrap();
        check_patch(
            &backup,
            vec![
                ("bar2", &[5_u8] as &[u8], Change::Delete),
                ("bar", &[1], Change::Delete),
                ("foo", &[], Change::Put(vec![2])),
            ],
        );

        // Check that the old snapshot still corresponds to the same DB state.
        assert_eq!(snapshot.get(&"foo".into(), &[]), Some(vec![2]));
        let snapshot = db.snapshot();
        assert_eq!(snapshot.get(&"foo".into(), &[]), Some(vec![3]));
    }

    #[test]
    fn rollback_via_backup_patches() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        {
            let mut view = View::new(&fork, "foo");
            view.put(&vec![], vec![2]);
        }
        db.merge(fork.into_patch()).unwrap();

        let fork = db.fork();
        {
            let mut view = View::new(&fork, "foo");
            view.put(&vec![], vec![3]);
            let mut view = View::new(&fork, "bar");
            view.put(&vec![1], vec![4]);
        }
        let backup = db.merge_with_backup(fork.into_patch()).unwrap();

        let snapshot = db.snapshot();
        assert_eq!(snapshot.get(&"foo".into(), &[]), Some(vec![3]));
        assert_eq!(backup.get(&"foo".into(), &[]), Some(vec![2]));
        assert_eq!(backup.get(&"bar".into(), &[1]), None);
        assert_eq!(snapshot.get(&"bar".into(), &[1]), Some(vec![4]));

        assert_eq!(
            snapshot.multi_get(&"foo".into(), &mut iter::once(&[] as &[u8])),
            vec![Some(vec![3])]
        );
        assert_eq!(
            backup.multi_get(&"foo".into(), &mut iter::once(&[] as &[u8])),
            vec![Some(vec![2])]
        );
        assert_eq!(
            backup.multi_get(&"bar".into(), &mut iter::once(&[1u8] as &[u8])),
            vec![None]
        );

        assert_eq!(
            snapshot.multi_get(&"bar".into(), &mut iter::once(&[1u8] as &[u8])),
            vec![Some(vec![4])]
        );

        db.merge(backup).unwrap();
        let snapshot = db.snapshot();
        assert_eq!(snapshot.get(&"foo".into(), &[]), Some(vec![2]));
        assert_eq!(snapshot.get(&"bar".into(), &[1]), None);

        assert_eq!(
            snapshot.multi_get(&"foo".into(), &mut iter::once(&[] as &[u8])),
            vec![Some(vec![2])]
        );
        assert_eq!(
            snapshot.multi_get(&"bar".into(), &mut iter::once(&[1u8] as &[u8])),
            vec![None]
        );

        // Check that DB continues working as usual after a rollback.
        let fork = db.fork();
        {
            let mut view = View::new(&fork, "foo");
            view.put(&vec![], vec![4]);
            view.put(&vec![0, 0], vec![255]);
            let mut view = View::new(&fork, "bar");
            view.put(&vec![1], vec![253]);
        }
        let backup1 = db.merge_with_backup(fork.into_patch()).unwrap();
        let snapshot = db.snapshot();
        assert_eq!(
            snapshot.multi_get(
                &"foo".into(),
                &mut vec![&[] as &[u8], &[0u8, 0]].into_iter()
            ),
            vec![Some(vec![4]), Some(vec![255])]
        );

        let fork = db.fork();
        {
            let mut view = View::new(&fork, "bar");
            view.put(&vec![1], vec![254]);
        }
        let backup2 = db.merge_with_backup(fork.into_patch()).unwrap();
        let snapshot = db.snapshot();
        assert_eq!(
            snapshot.multi_get(
                &"foo".into(),
                &mut vec![&[] as &[u8], &[0u8, 0]].into_iter()
            ),
            vec![Some(vec![4]), Some(vec![255])]
        );
        assert_eq!(snapshot.get(&"bar".into(), &[1]), Some(vec![254]));

        // Check patches used as `Snapshot`s.
        assert_eq!(backup1.get(&"bar".into(), &[1]), None);
        assert_eq!(backup2.get(&"bar".into(), &[1]), Some(vec![253]));
        assert_eq!(backup1.get(&"foo".into(), &[]), Some(vec![2]));
        assert_eq!(backup2.get(&"foo".into(), &[]), Some(vec![4]));

        // Backups should be applied in the reverse order.
        db.merge(backup2).unwrap();
        db.merge(backup1).unwrap();
        let snapshot = db.snapshot();
        assert_eq!(
            snapshot.multi_get(&"foo".into(), &mut vec![&[] as &[u8], &[0, 0]].into_iter()),
            vec![Some(vec![2]), None]
        );
        assert_eq!(snapshot.get(&"bar".into(), &[1]), None);
    }

    #[test]
    fn backup_after_clearing_view() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        {
            let mut view = View::new(&fork, "foo");
            view.put(&vec![], vec![1]);
            view.put(&vec![1], vec![2]);
        }
        db.merge(fork.into_patch()).unwrap();

        let fork = db.fork();
        {
            let mut view = View::new(&fork, "foo");
            view.clear();
            view.put(&vec![1], vec![3]);
            view.put(&vec![2], vec![4]);
        }
        let backup = db.merge_with_backup(fork.into_patch()).unwrap();
        assert_eq!(
            backup.multi_get(
                &"foo".into(),
                &mut vec![&[] as &[u8], &[1], &[2]].into_iter()
            ),
            vec![Some(vec![1]), Some(vec![2]), None]
        );
        db.merge(backup).unwrap();
        let snapshot = db.snapshot();
        assert_eq!(
            snapshot.multi_get(
                &"foo".into(),
                &mut vec![&[] as &[u8], &[1], &[2]].into_iter()
            ),
            vec![Some(vec![1]), Some(vec![2]), None]
        );
    }

    #[test]
    fn backup_reverting_index_creation() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        fork.get_entry("foo").set(1_u32);
        db.merge(fork.into_patch()).unwrap();
        let fork = db.fork();
        fork.get_entry(("foo", &1_u8)).set(2_u32);
        let backup = db.merge_with_backup(fork.into_patch()).unwrap();
        assert!(backup.index_type(("foo", &1_u8)).is_none());
        assert!(backup.get_list::<_, u32>(("foo", &1_u8)).is_empty());
    }

    #[test]
    fn borrows_from_owned_forks() {
        use crate::{access::AccessExt, Entry};

        let db = TemporaryDB::new();
        let fork = Rc::new(db.fork());
        let readonly: OwnedReadonlyFork = fork.as_readonly();
        // Modify an index via `fork`.
        fork.get_list("list").extend(vec![1_i64, 2, 3]);
        // Check that if both `CopyAccessExt` and `AccessExt` traits are in scope, the correct one
        // is used for `Rc<Fork>`.
        let mut entry: Entry<Rc<Fork>, _> = fork.get_entry("entry");
        // Access the list via `readonly`.
        let list = readonly.get_list::<_, i64>("list");
        assert_eq!(list.len(), 3);
        assert_eq!(list.get(1), Some(2));
        assert_eq!(list.iter_from(1).collect::<Vec<_>>(), vec![2, 3]);

        entry.set("!".to_owned());
        drop(entry);
        let entry = readonly.get_entry::<_, String>("entry");
        // Clone `readonly` access and get another `entry` instance.
        let other_readonly = readonly;
        let other_entry = other_readonly.get_entry::<_, String>("entry");
        assert_eq!(entry.get().unwrap(), "!");
        assert_eq!(other_entry.get().unwrap(), "!");
    }

    #[test]
    fn concurrent_borrow_from_fork_and_readonly_fork() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        // This entry is phantom.
        let _readonly_entry = fork.readonly().get_entry::<_, u32>(("entry", &1_u8));
        // This one is not phantom, but it has the same `ResolvedAddress` as the phantom entry.
        // Since phantom entries do not borrow changes from the `Fork`, this works fine.
        let _entry = fork.get_entry::<_, u32>("entry");
    }

    #[test]
    fn stale_read_from_phantom_index() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        // Phantom entries are unusual in that they can lead to stale reads (sort of; we assume
        // that the database writer is smart enough to separate readonly and read-write parts
        // of the `Fork`, e.g., via `Prefixed` accesses).
        let phantom_entry = fork.readonly().get_entry::<_, u32>("entry");
        let mut entry = fork.get_entry::<_, u32>("entry");
        entry.set(1);
        assert_eq!(phantom_entry.get(), None);
    }

    #[test]
    #[should_panic(expected = "immutably while it's borrowed mutably")]
    fn borrow_from_readonly_fork_after_index_is_created() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        let _entry = fork.get_entry::<_, u32>("entry");
        // Since the index is already created, this should lead to a panic.
        let _readonly_entry = fork.readonly().get_entry::<_, u32>("entry");
    }
}