memflow 0.2.0-beta9

core components of the memflow physical memory introspection framework
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*!
Pointer abstraction.
*/

use crate::cglue::ReprCString;
use crate::dataview::Pod;
use crate::error::{PartialError, PartialResult};
use crate::mem::MemoryView;
use crate::types::{imem, umem, Address, ByteSwap, PrimitiveAddress};

use std::convert::TryInto;
use std::marker::PhantomData;
use std::mem::size_of;
use std::{cmp, fmt, hash, ops};

pub type Pointer32<T> = Pointer<u32, T>;
pub type Pointer64<T> = Pointer<u64, T>;

const _: [(); std::mem::size_of::<Pointer32<()>>()] = [(); std::mem::size_of::<u32>()];
const _: [(); std::mem::size_of::<Pointer64<()>>()] = [(); std::mem::size_of::<u64>()];

/// This type can be used in structs that are being read from the target memory.
/// It holds a phantom type that can be used to describe the proper type of the pointer
/// and to read it in a more convenient way.
///
/// This module is a direct adaption of [CasualX's great IntPtr crate](https://github.com/CasualX/intptr).
///
/// Generally the generic Type should implement the Pod trait to be read into easily.
/// See [here](https://docs.rs/dataview/0.1.1/dataview/) for more information on the Pod trait.
///
/// # Examples
///
/// ```
/// use memflow::types::Pointer64;
/// use memflow::mem::MemoryView;
/// use memflow::dataview::Pod;
///
/// #[repr(C)]
/// #[derive(Clone, Debug, Pod)]
/// struct Foo {
///     pub some_value: i64,
/// }
///
/// #[repr(C)]
/// #[derive(Clone, Debug, Pod)]
/// struct Bar {
///     pub foo_ptr: Pointer64<Foo>,
/// }
///
/// fn read_foo_bar(mem: &mut impl MemoryView) {
///     let bar: Bar = mem.read(0x1234.into()).unwrap();
///     let foo = bar.foo_ptr.read(mem).unwrap();
///     println!("value: {}", foo.some_value);
/// }
///
/// # use memflow::types::size;
/// # use memflow::dummy::DummyOs;
/// # use memflow::os::Process;
/// # read_foo_bar(&mut DummyOs::quick_process(size::mb(2), &[]));
/// ```
///
/// ```
/// use memflow::types::Pointer64;
/// use memflow::mem::MemoryView;
/// use memflow::dataview::Pod;
///
/// #[repr(C)]
/// #[derive(Clone, Debug, Pod)]
/// struct Foo {
///     pub some_value: i64,
/// }
///
/// #[repr(C)]
/// #[derive(Clone, Debug, Pod)]
/// struct Bar {
///     pub foo_ptr: Pointer64<Foo>,
/// }
///
/// fn read_foo_bar(mem: &mut impl MemoryView) {
///     let bar: Bar = mem.read(0x1234.into()).unwrap();
///     let foo = mem.read_ptr(bar.foo_ptr).unwrap();
///     println!("value: {}", foo.some_value);
/// }
///
/// # use memflow::dummy::DummyOs;
/// # use memflow::os::Process;
/// # use memflow::types::size;
/// # read_foo_bar(&mut DummyOs::quick_process(size::mb(2), &[]));
/// ```
#[repr(transparent)]
#[cfg_attr(feature = "serde", derive(::serde::Serialize))]
pub struct Pointer<U: Sized, T: ?Sized = ()> {
    pub inner: U,
    phantom_data: PhantomData<fn() -> T>,
}
unsafe impl<U: Pod, T: ?Sized + 'static> Pod for Pointer<U, T> {}

impl<U: PrimitiveAddress, T: ?Sized> Pointer<U, T> {
    const PHANTOM_DATA: PhantomData<fn() -> T> = PhantomData;

    /// Returns a pointer64 with a value of zero.
    ///
    /// # Examples
    ///
    /// ```
    /// use memflow::types::Pointer64;
    ///
    /// println!("pointer: {}", Pointer64::<()>::null());
    /// ```
    #[inline]
    pub fn null() -> Self {
        Pointer {
            inner: U::null(),
            phantom_data: PhantomData,
        }
    }

    /// Returns `true` if the pointer64 is null.
    ///
    /// # Examples
    ///
    /// ```
    /// use memflow::types::Pointer32;
    ///
    /// let ptr = Pointer32::<()>::from(0x1000u32);
    /// assert!(!ptr.is_null());
    /// ```
    #[inline]
    pub fn is_null(self) -> bool {
        self.inner.is_null()
    }

    /// Converts the pointer64 to an Option that is None when it is null
    ///
    /// # Examples
    ///
    /// ```
    /// use memflow::types::Pointer64;
    ///
    /// assert_eq!(Pointer64::<()>::null().non_null(), None);
    /// assert_eq!(Pointer64::<()>::from(0x1000u64).non_null(), Some(Pointer64::from(0x1000u64)));
    /// ```
    #[inline]
    pub fn non_null(self) -> Option<Pointer<U, T>> {
        if self.is_null() {
            None
        } else {
            Some(self)
        }
    }

    /// Converts the pointer into a raw `umem` value.
    ///
    /// # Examples
    ///
    /// ```
    /// use memflow::types::{Pointer64, umem};
    ///
    /// let ptr = Pointer64::<()>::from(0x1000u64);
    /// let ptr_umem: umem = ptr.to_umem();
    /// assert_eq!(ptr_umem, 0x1000);
    /// ```
    #[inline]
    pub fn to_umem(self) -> umem {
        self.inner.to_umem()
    }

    // Returns the address this pointer holds.
    #[inline]
    pub fn address(&self) -> Address {
        Address::from(self.inner)
    }
}

impl<U: PrimitiveAddress, T: Sized> Pointer<U, T> {
    /// Calculates the offset from a pointer64
    ///
    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer offset of `3 * size_of::<T>()` bytes.
    ///
    /// # Panics
    ///
    /// This function panics if `T` is a Zero-Sized Type ("ZST").
    /// This function also panics when `offset * size_of::<T>()`
    /// causes overflow of a signed 64-bit integer.
    ///
    /// # Examples:
    ///
    /// ```
    /// use memflow::types::Pointer64;
    ///
    /// let ptr = Pointer64::<u16>::from(0x1000u64);
    ///
    /// println!("{:?}", ptr.offset(3));
    /// ```
    pub fn offset(self, count: imem) -> Self {
        let pointee_size = U::from_umem(size_of::<T>() as umem);
        assert!(U::null() < pointee_size && pointee_size <= PrimitiveAddress::max());

        if count >= 0 {
            self.inner
                .wrapping_add(U::from_umem(pointee_size.to_umem() * count as umem))
                .into()
        } else {
            self.inner
                .wrapping_sub(U::from_umem(pointee_size.to_umem() * (-count) as umem))
                .into()
        }
    }

    /// Calculates the distance between two pointers. The returned value is in
    /// units of T: the distance in bytes is divided by `mem::size_of::<T>()`.
    ///
    /// This function is the inverse of [`offset`].
    ///
    /// [`offset`]: #method.offset
    ///
    /// # Panics
    ///
    /// This function panics if `T` is a Zero-Sized Type ("ZST").
    ///
    /// # Examples:
    ///
    /// ```
    /// use memflow::types::Pointer64;
    ///
    /// let ptr1 = Pointer64::<u16>::from(0x1000u64);
    /// let ptr2 = Pointer64::<u16>::from(0x1008u64);
    ///
    /// assert_eq!(ptr2.offset_from(ptr1), 4);
    /// assert_eq!(ptr1.offset_from(ptr2), -4);
    /// ```
    pub fn offset_from(self, origin: Self) -> imem {
        let pointee_size: imem = size_of::<T>().try_into().unwrap();
        let offset = self.inner.to_imem().wrapping_sub(origin.inner.to_imem());
        offset / pointee_size as imem
    }

    /// Calculates the offset from a pointer (convenience for `.offset(count as i64)`).
    ///
    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
    /// offset of `3 * size_of::<T>()` bytes.
    ///
    /// # Panics
    ///
    /// This function panics if `T` is a Zero-Sized Type ("ZST").
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use memflow::types::Pointer64;
    ///
    /// let ptr = Pointer64::<u16>::from(0x1000u64);
    ///
    /// println!("{:?}", ptr.add(3));
    /// ```
    #[allow(clippy::should_implement_trait)]
    pub fn add(self, count: umem) -> Self {
        self.offset(count as imem)
    }

    /// Calculates the offset from a pointer (convenience for
    /// `.offset((count as isize).wrapping_neg())`).
    ///
    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
    /// offset of `3 * size_of::<T>()` bytes.
    ///
    /// # Panics
    ///
    /// This function panics if `T` is a Zero-Sized Type ("ZST").
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use memflow::types::Pointer64;
    ///
    /// let ptr = Pointer64::<u16>::from(0x1000u64);
    ///
    /// println!("{:?}", ptr.sub(3));
    /// ```
    #[allow(clippy::should_implement_trait)]
    pub fn sub(self, count: umem) -> Self {
        self.offset((count as imem).wrapping_neg())
    }
}

/// Implement special phys/virt read/write for Pod types
impl<U: PrimitiveAddress, T: Pod + ?Sized> Pointer<U, T> {
    pub fn read_into<M: MemoryView>(self, mem: &mut M, out: &mut T) -> PartialResult<()> {
        mem.read_ptr_into(self, out)
    }
}

impl<U: PrimitiveAddress, T: Pod + Sized> Pointer<U, T> {
    pub fn read<M: MemoryView>(self, mem: &mut M) -> PartialResult<T> {
        mem.read_ptr(self)
    }

    pub fn write<M: MemoryView>(self, mem: &mut M, data: &T) -> PartialResult<()> {
        mem.write_ptr(self, data)
    }
}

/// Implement special phys/virt read/write for CReprStr
impl<U: PrimitiveAddress> Pointer<U, ReprCString> {
    pub fn read_string<M: MemoryView>(self, mem: &mut M) -> PartialResult<ReprCString> {
        match mem.read_char_string(self.inner.to_umem().into()) {
            Ok(s) => Ok(s.into()),
            Err(PartialError::Error(e)) => Err(PartialError::Error(e)),
            Err(PartialError::PartialVirtualRead(s)) => {
                Err(PartialError::PartialVirtualRead(s.into()))
            }
            Err(PartialError::PartialVirtualWrite(s)) => {
                Err(PartialError::PartialVirtualWrite(s.into()))
            }
        }
    }
}

impl<U: PrimitiveAddress, T> Pointer<U, [T]> {
    pub fn decay(self) -> Pointer<U, T> {
        Pointer {
            inner: self.inner,
            phantom_data: Pointer::<U, T>::PHANTOM_DATA,
        }
    }

    pub fn at(self, i: umem) -> Pointer<U, T> {
        let inner = self
            .inner
            .wrapping_add(U::from_umem(size_of::<T>() as umem * i));
        Pointer {
            inner,
            phantom_data: Pointer::<U, T>::PHANTOM_DATA,
        }
    }
}

impl<U: PrimitiveAddress, T: ?Sized> Copy for Pointer<U, T> {}
impl<U: PrimitiveAddress, T: ?Sized> Clone for Pointer<U, T> {
    #[inline(always)]
    fn clone(&self) -> Pointer<U, T> {
        *self
    }
}
impl<U: PrimitiveAddress, T: ?Sized> Default for Pointer<U, T> {
    #[inline(always)]
    fn default() -> Pointer<U, T> {
        Pointer::null()
    }
}
impl<U: PrimitiveAddress, T: ?Sized> Eq for Pointer<U, T> {}
impl<U: PrimitiveAddress, T: ?Sized> PartialEq for Pointer<U, T> {
    #[inline(always)]
    fn eq(&self, rhs: &Pointer<U, T>) -> bool {
        self.inner == rhs.inner
    }
}
impl<U: PrimitiveAddress, T: ?Sized> PartialOrd for Pointer<U, T> {
    #[inline(always)]
    fn partial_cmp(&self, rhs: &Pointer<U, T>) -> Option<cmp::Ordering> {
        self.inner.partial_cmp(&rhs.inner)
    }
}
impl<U: PrimitiveAddress, T: ?Sized> Ord for Pointer<U, T> {
    #[inline(always)]
    fn cmp(&self, rhs: &Pointer<U, T>) -> cmp::Ordering {
        self.inner.cmp(&rhs.inner)
    }
}
impl<U: PrimitiveAddress, T: ?Sized> hash::Hash for Pointer<U, T> {
    #[inline(always)]
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.inner.hash(state)
    }
}
impl<U: PrimitiveAddress, T: ?Sized> AsRef<U> for Pointer<U, T> {
    #[inline(always)]
    fn as_ref(&self) -> &U {
        &self.inner
    }
}
impl<U: PrimitiveAddress, T: ?Sized> AsMut<U> for Pointer<U, T> {
    #[inline(always)]
    fn as_mut(&mut self) -> &mut U {
        &mut self.inner
    }
}

// From implementations
impl<U: PrimitiveAddress, T: ?Sized> From<U> for Pointer<U, T> {
    #[inline(always)]
    fn from(address: U) -> Pointer<U, T> {
        Pointer {
            inner: address,
            phantom_data: PhantomData,
        }
    }
}

impl<T: ?Sized> From<Address> for Pointer64<T> {
    #[inline(always)]
    fn from(address: Address) -> Pointer64<T> {
        Pointer {
            inner: address.to_umem() as u64,
            phantom_data: PhantomData,
        }
    }
}

// Into implementations
impl<U: Into<Address>, T: ?Sized> From<Pointer<U, T>> for umem {
    #[inline(always)]
    fn from(ptr: Pointer<U, T>) -> umem {
        let address: Address = ptr.inner.into();
        address.to_umem()
    }
}

// Arithmetic operations
impl<U: PrimitiveAddress, T> ops::Add<umem> for Pointer<U, T> {
    type Output = Pointer<U, T>;
    #[inline(always)]
    fn add(self, other: umem) -> Pointer<U, T> {
        let address = self.inner + U::from_umem(size_of::<T>() as umem * other);
        Pointer {
            inner: address,
            phantom_data: self.phantom_data,
        }
    }
}
impl<U: PrimitiveAddress, T> ops::Sub<umem> for Pointer<U, T> {
    type Output = Pointer<U, T>;
    #[inline(always)]
    fn sub(self, other: umem) -> Pointer<U, T> {
        let address = self.inner - U::from_umem(size_of::<T>() as umem * other);
        Pointer {
            inner: address,
            phantom_data: self.phantom_data,
        }
    }
}

#[cfg(feature = "64_bit_mem")]
impl<U: PrimitiveAddress, T> ops::Add<usize> for Pointer<U, T> {
    type Output = Pointer<U, T>;
    #[inline(always)]
    fn add(self, other: usize) -> Pointer<U, T> {
        self + other as umem
    }
}
#[cfg(feature = "64_bit_mem")]
impl<U: PrimitiveAddress, T> ops::Sub<usize> for Pointer<U, T> {
    type Output = Pointer<U, T>;
    #[inline(always)]
    fn sub(self, other: usize) -> Pointer<U, T> {
        self - other as umem
    }
}

impl<U: PrimitiveAddress, T: ?Sized> fmt::Debug for Pointer<U, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:x}", self.inner)
    }
}
impl<U: PrimitiveAddress, T: ?Sized> fmt::UpperHex for Pointer<U, T> {
    #[inline(always)]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:X}", self.inner)
    }
}
impl<U: PrimitiveAddress, T: ?Sized> fmt::LowerHex for Pointer<U, T> {
    #[inline(always)]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:x}", self.inner)
    }
}
impl<U: PrimitiveAddress, T: ?Sized> fmt::Display for Pointer<U, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:x}", self.inner)
    }
}

impl<U: PrimitiveAddress, T: ?Sized + 'static> ByteSwap for Pointer<U, T> {
    fn byte_swap(&mut self) {
        self.inner.byte_swap();
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn offset32() {
        let ptr8 = Pointer32::<u8>::from(0x1000u32);
        assert_eq!(ptr8.offset(3).to_umem(), 0x1003);
        assert_eq!(ptr8.offset(-5).to_umem(), 0xFFB);

        let ptr16 = Pointer32::<u16>::from(0x1000u32);
        assert_eq!(ptr16.offset(3).to_umem(), 0x1006);
        assert_eq!(ptr16.offset(-5).to_umem(), 0xFF6);

        let ptr32 = Pointer32::<u32>::from(0x1000u32);
        assert_eq!(ptr32.offset(3).to_umem(), 0x100C);
        assert_eq!(ptr32.offset(-5).to_umem(), 0xFEC);
    }

    #[test]
    fn offset64() {
        let ptr8 = Pointer64::<u8>::from(0x1000u64);
        assert_eq!(ptr8.offset(3).to_umem(), 0x1003);
        assert_eq!(ptr8.offset(-5).to_umem(), 0xFFB);

        let ptr16 = Pointer64::<u16>::from(0x1000u64);
        assert_eq!(ptr16.offset(3).to_umem(), 0x1006);
        assert_eq!(ptr16.offset(-5).to_umem(), 0xFF6);

        let ptr32 = Pointer64::<u32>::from(0x1000u64);
        assert_eq!(ptr32.offset(3).to_umem(), 0x100C);
        assert_eq!(ptr32.offset(-5).to_umem(), 0xFEC);

        let ptr64 = Pointer64::<u64>::from(0x1000u64);
        assert_eq!(ptr64.offset(3).to_umem(), 0x1018);
        assert_eq!(ptr64.offset(-5).to_umem(), 0xFD8);
    }

    #[test]
    fn offset_from() {
        let ptr1 = Pointer64::<u16>::from(0x1000u64);
        let ptr2 = Pointer64::<u16>::from(0x1008u64);

        assert_eq!(ptr2.offset_from(ptr1), 4);
        assert_eq!(ptr1.offset_from(ptr2), -4);
    }
}