mecomp_analysis/
timbral.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
//! Timbral feature extraction module.
//!
//! Contains functions to extract & summarize the zero-crossing rate,
//! spectral centroid, spectral flatness and spectral roll-off of
//! a given Song.

use bliss_audio_aubio_rs::vec::CVec;
use bliss_audio_aubio_rs::{bin_to_freq, PVoc, SpecDesc, SpecShape};
use ndarray::{arr1, Axis};

use crate::Feature;

use super::errors::{AnalysisError, AnalysisResult};
use super::utils::{geometric_mean, mean, number_crossings, Normalize};
use super::SAMPLE_RATE;

/**
 * General object holding all the spectral descriptor.
 *
 * Holds 3 spectral descriptors together. It would be better conceptually
 * to have 3 different spectral descriptor objects, but this avoids re-computing
 * the same FFT three times.
 *
 * Current spectral descriptors are spectral centroid, spectral rolloff and
 * spectral flatness (see `values_object` for a further description of the
 * object.
 *
 * All descriptors are currently summarized by their mean only.
 */
pub struct SpectralDesc {
    phase_vocoder: PVoc,
    sample_rate: u32,

    centroid_aubio_desc: SpecDesc,
    rolloff_aubio_desc: SpecDesc,
    values_centroid: Vec<f32>,
    values_rolloff: Vec<f32>,
    values_flatness: Vec<f32>,
}

impl SpectralDesc {
    pub const WINDOW_SIZE: usize = 512;
    pub const HOP_SIZE: usize = Self::WINDOW_SIZE / 4;

    /**
     * Compute score related to the
     * [spectral centroid](https://en.wikipedia.org/wiki/Spectral_centroid) values,
     * obtained after repeatedly calling `do_` on all of the song's chunks.
     *
     * Spectral centroid is used to determine the "brightness" of a sound, i.e.
     * how much high frequency there is in an audio signal.
     *
     * It of course depends of the instrument used: a piano-only track that makes
     * use of high frequencies will still score less than a song using a lot of
     * percussive sound, because the piano frequency range is lower.
     *
     * The value range is between 0 and `sample_rate / 2`.
     */
    pub fn get_centroid(&mut self) -> Vec<Feature> {
        vec![
            self.normalize(Feature::from(mean(&self.values_centroid))),
            self.normalize(Feature::from(
                arr1(&self.values_centroid)
                    .std_axis(Axis(0), 0.)
                    .into_scalar(),
            )),
        ]
    }

    /**
     * Compute score related to the spectral roll-off values, obtained
     * after repeatedly calling `do_` on all of the song's chunks.
     *
     * Spectral roll-off is the bin frequency number below which a certain
     * percentage of the spectral energy is found, here, 95%.
     *
     * It can be used to distinguish voiced speech (low roll-off) and unvoiced
     * speech (high roll-off). It is also a good indication of the energy
     * repartition of a song.
     *
     * The value range is between 0 and `sample_rate / 2`
     */
    pub fn get_rolloff(&mut self) -> Vec<Feature> {
        vec![
            self.normalize(Feature::from(mean(&self.values_rolloff))),
            self.normalize(Feature::from(
                arr1(&self.values_rolloff)
                    .std_axis(Axis(0), 0.)
                    .into_scalar(),
            )),
        ]
    }

    /**
     * Compute score related to the
     * [spectral flatness](https://en.wikipedia.org/wiki/Spectral_flatness) values,
     * obtained after repeatedly calling `do_` on all of the song's chunks.
     *
     * Spectral flatness is the ratio between the geometric mean of the spectrum
     * and its arithmetic mean.
     *
     * It is used to distinguish between tone-like and noise-like signals.
     * Tone-like audio is f.ex. a piano key, something that has one or more
     * specific frequencies, while (white) noise has an equal distribution
     * of intensity among all frequencies.
     *
     * The value range is between 0 and 1, since the geometric mean is always less
     * than the arithmetic mean.
     */
    pub fn get_flatness(&mut self) -> Vec<Feature> {
        let max_value = 1.;
        let min_value = 0.;
        // Range is different from the other spectral algorithms, so normalizing
        // manually here.
        vec![
            2. * (Feature::from(mean(&self.values_flatness)) - min_value) / (max_value - min_value)
                - 1.,
            2. * (Feature::from(
                arr1(&self.values_flatness)
                    .std_axis(Axis(0), 0.)
                    .into_scalar(),
            ) - min_value)
                / (max_value - min_value)
                - 1.,
        ]
    }

    /// # Errors
    ///
    /// This function will return an error if there is an error loading the aubio objects
    pub fn new(sample_rate: u32) -> AnalysisResult<Self> {
        Ok(Self {
            centroid_aubio_desc: SpecDesc::new(SpecShape::Centroid, Self::WINDOW_SIZE).map_err(
                |e| {
                    AnalysisError::AnalysisError(format!(
                        "error while loading aubio centroid object: {e}",
                    ))
                },
            )?,
            rolloff_aubio_desc: SpecDesc::new(SpecShape::Rolloff, Self::WINDOW_SIZE).map_err(
                |e| {
                    AnalysisError::AnalysisError(format!(
                        "error while loading aubio rolloff object: {e}",
                    ))
                },
            )?,
            phase_vocoder: PVoc::new(Self::WINDOW_SIZE, Self::HOP_SIZE).map_err(|e| {
                AnalysisError::AnalysisError(format!("error while loading aubio pvoc object: {e}",))
            })?,
            values_centroid: Vec::new(),
            values_rolloff: Vec::new(),
            values_flatness: Vec::new(),
            sample_rate,
        })
    }

    /**
    Compute all the descriptors' value for the given chunk.

    After using this on all the song's chunks, you can call
    `get_centroid`, `get_flatness` and `get_rolloff` to get the respective
    descriptors' values.
    */
    #[allow(clippy::missing_errors_doc, clippy::missing_panics_doc)]
    pub fn do_(&mut self, chunk: &[f32]) -> AnalysisResult<()> {
        let mut fftgrain: Vec<f32> = vec![0.0; Self::WINDOW_SIZE];
        self.phase_vocoder
            .do_(chunk, fftgrain.as_mut_slice())
            .map_err(|e| {
                AnalysisError::AnalysisError(format!("error while processing aubio pv object: {e}"))
            })?;

        let bin = self
            .centroid_aubio_desc
            .do_result(fftgrain.as_slice())
            .map_err(|e| {
                AnalysisError::AnalysisError(format!(
                    "error while processing aubio centroid object: {e}",
                ))
            })?;

        #[allow(clippy::cast_precision_loss)]
        let freq = bin_to_freq(bin, self.sample_rate as f32, Self::WINDOW_SIZE as f32);
        self.values_centroid.push(freq);

        let mut bin = self
            .rolloff_aubio_desc
            .do_result(fftgrain.as_slice())
            .unwrap();

        // Until https://github.com/aubio/aubio/pull/318 is in
        #[allow(clippy::cast_precision_loss)]
        if bin > Self::WINDOW_SIZE as f32 / 2. {
            bin = Self::WINDOW_SIZE as f32 / 2.;
        }

        #[allow(clippy::cast_precision_loss)]
        let freq = bin_to_freq(bin, self.sample_rate as f32, Self::WINDOW_SIZE as f32);
        self.values_rolloff.push(freq);

        let cvec: CVec = fftgrain.as_slice().into();
        let geo_mean = geometric_mean(cvec.norm());
        if geo_mean == 0.0 {
            self.values_flatness.push(0.0);
            return Ok(());
        }
        let flatness = geo_mean / mean(cvec.norm());
        self.values_flatness.push(flatness);
        Ok(())
    }
}

impl Normalize for SpectralDesc {
    #[allow(clippy::cast_precision_loss)]
    const MAX_VALUE: Feature = SAMPLE_RATE as Feature / 2.;
    const MIN_VALUE: Feature = 0.;
}

/**
 * [Zero-crossing rate](https://en.wikipedia.org/wiki/Zero-crossing_rate)
 * detection object.
 *
 * Zero-crossing rate is mostly used to detect percussive sounds in an audio
 * signal, as well as whether an audio signal contains speech or not.
 *
 * It is a good metric to differentiate between songs with people speaking clearly,
 * (e.g. slam) and instrumental songs.
 *
 * The value range is between 0 and 1.
 */
#[derive(Default, Clone)]
pub struct ZeroCrossingRateDesc {
    values: Vec<u32>,
    number_samples: usize,
}

impl ZeroCrossingRateDesc {
    #[allow(dead_code)]
    #[must_use]
    pub fn new(_sample_rate: u32) -> Self {
        Self::default()
    }

    /// Count the number of zero-crossings for the current `chunk`.
    pub fn do_(&mut self, chunk: &[f32]) {
        self.values.push(number_crossings(chunk));
        self.number_samples += chunk.len();
    }

    /// Sum the number of zero-crossings witnessed and divide by
    /// the total number of samples.
    #[allow(clippy::cast_precision_loss)]
    pub fn get_value(&mut self) -> Feature {
        self.normalize(
            Feature::from(self.values.iter().sum::<u32>()) / self.number_samples as Feature,
        )
    }
}

impl Normalize for ZeroCrossingRateDesc {
    const MAX_VALUE: Feature = 1.;
    const MIN_VALUE: Feature = 0.;
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::decoder::{Decoder as DecoderTrait, MecompDecoder as Decoder};
    use std::path::Path;

    #[test]
    fn test_zcr_boundaries() {
        let mut zcr_desc = ZeroCrossingRateDesc::default();
        let chunk = vec![0.; 1024];
        zcr_desc.do_(&chunk);
        assert_eq!(-1., zcr_desc.get_value());

        let one_chunk = [-1., 1.];
        let chunks = std::iter::repeat(one_chunk.iter())
            .take(512)
            .flatten()
            .copied()
            .collect::<Vec<f32>>();
        let mut zcr_desc = ZeroCrossingRateDesc::default();
        zcr_desc.do_(&chunks);
        assert!(
            0.001 > (0.998_046_9 - zcr_desc.get_value()).abs(),
            "{} !~= 0.9980469",
            zcr_desc.get_value()
        );
    }

    #[test]
    fn test_zcr() {
        let song = Decoder::decode(Path::new("data/s16_mono_22_5kHz.flac")).unwrap();
        let mut zcr_desc = ZeroCrossingRateDesc::default();
        for chunk in song.samples.chunks_exact(SpectralDesc::HOP_SIZE) {
            zcr_desc.do_(chunk);
        }
        assert!(
            0.001 > (-0.85036 - zcr_desc.get_value()).abs(),
            "{} !~= -0.85036",
            zcr_desc.get_value()
        );
    }

    #[test]
    fn test_spectral_flatness_boundaries() {
        let mut spectral_desc = SpectralDesc::new(10).unwrap();
        let chunk = vec![0.; 1024];

        let expected_values = [-1., -1.];
        spectral_desc.do_(&chunk).unwrap();
        for (expected, actual) in expected_values
            .iter()
            .zip(spectral_desc.get_flatness().iter())
        {
            assert!(
                0.000_000_1 > (expected - actual).abs(),
                "{expected} !~= {actual}"
            );
        }

        let song = Decoder::decode(Path::new("data/white_noise.mp3")).unwrap();
        let mut spectral_desc = SpectralDesc::new(22050).unwrap();
        for chunk in song.samples.chunks_exact(SpectralDesc::HOP_SIZE) {
            spectral_desc.do_(chunk).unwrap();
        }
        println!("{:?}", spectral_desc.get_flatness());
        // White noise - as close to 1 as possible
        let expected_values = [0.578_530_3, -0.942_630_8];
        for (expected, actual) in expected_values
            .iter()
            .zip(spectral_desc.get_flatness().iter())
        {
            // original test wanted absolute error < 0.001
            // assert!(0.001 > (expected - actual).abs(), "{expected} !~= {actual}");
            let relative_error = (expected - actual).abs() / expected.abs();
            assert!(
                relative_error < 0.078,
                "relative error: {relative_error}, expected: {expected}, actual: {actual}"
            );
        }
    }

    #[test]
    fn test_spectral_flatness() {
        let song = Decoder::decode(Path::new("data/s16_mono_22_5kHz.flac")).unwrap();
        let mut spectral_desc = SpectralDesc::new(SAMPLE_RATE).unwrap();
        for chunk in song.samples.chunks_exact(SpectralDesc::HOP_SIZE) {
            spectral_desc.do_(chunk).unwrap();
        }
        // Spectral flatness mean value computed here with phase vocoder before normalization: 0.111949615
        // Essentia value with spectrum / hann window: 0.11197535695207445
        let expected_values = [-0.776_100_75, -0.814_817_9];
        for (expected, actual) in expected_values
            .iter()
            .zip(spectral_desc.get_flatness().iter())
        {
            assert!(0.01 > (expected - actual).abs(), "{expected} !~= {actual}");
        }
    }

    #[test]
    fn test_spectral_roll_off_boundaries() {
        let mut spectral_desc = SpectralDesc::new(10).unwrap();
        let chunk = vec![0.; 512];

        let expected_values = [-1., -1.];
        spectral_desc.do_(&chunk).unwrap();
        for (expected, actual) in expected_values
            .iter()
            .zip(spectral_desc.get_rolloff().iter())
        {
            assert!(
                0.000_000_1 > (expected - actual).abs(),
                "{expected} !~= {actual}"
            );
        }

        let song = Decoder::decode(Path::new("data/tone_11080Hz.flac")).unwrap();
        let mut spectral_desc = SpectralDesc::new(SAMPLE_RATE).unwrap();
        for chunk in song.samples.chunks_exact(SpectralDesc::HOP_SIZE) {
            spectral_desc.do_(chunk).unwrap();
        }
        let expected_values = [0.996_768_1, -0.996_151_75];
        for (expected, actual) in expected_values
            .iter()
            .zip(spectral_desc.get_rolloff().iter())
        {
            assert!(
                0.0001 > (expected - actual).abs(),
                "{expected} !~= {actual}"
            );
        }
    }

    #[test]
    fn test_spectral_roll_off() {
        let song = Decoder::decode(Path::new("data/s16_mono_22_5kHz.flac")).unwrap();
        let mut spectral_desc = SpectralDesc::new(SAMPLE_RATE).unwrap();
        for chunk in song.samples.chunks_exact(SpectralDesc::HOP_SIZE) {
            spectral_desc.do_(chunk).unwrap();
        }
        let expected_values = [-0.632_648_6, -0.726_093_3];
        // Roll-off mean value computed here with phase vocoder before normalization: 2026.7644
        // Essentia value with spectrum / hann window: 1979.632683520047
        for (expected, actual) in expected_values
            .iter()
            .zip(spectral_desc.get_rolloff().iter())
        {
            assert!(0.01 > (expected - actual).abs(), "{expected} !~= {actual}");
        }
    }

    #[test]
    fn test_spectral_centroid() {
        let song = Decoder::decode(Path::new("data/s16_mono_22_5kHz.flac")).unwrap();
        let mut spectral_desc = SpectralDesc::new(SAMPLE_RATE).unwrap();
        for chunk in song.samples.chunks_exact(SpectralDesc::HOP_SIZE) {
            spectral_desc.do_(chunk).unwrap();
        }
        // Spectral centroid mean value computed here with phase vocoder before normalization: 1354.2273
        // Essential value with spectrum / hann window: 1351
        let expected_values = [-0.75483, -0.879_168_87];
        for (expected, actual) in expected_values
            .iter()
            .zip(spectral_desc.get_centroid().iter())
        {
            assert!(
                0.0001 > (expected - actual).abs(),
                "{expected} !~= {actual}"
            );
        }
    }

    #[test]
    fn test_spectral_centroid_boundaries() {
        let mut spectral_desc = SpectralDesc::new(10).unwrap();
        let chunk = vec![0.; 512];

        spectral_desc.do_(&chunk).unwrap();
        let expected_values = [-1., -1.];
        for (expected, actual) in expected_values
            .iter()
            .zip(spectral_desc.get_centroid().iter())
        {
            assert!(
                0.000_000_1 > (expected - actual).abs(),
                "{expected} !~= {actual}"
            );
        }
        let song = Decoder::decode(Path::new("data/tone_11080Hz.flac")).unwrap();
        let mut spectral_desc = SpectralDesc::new(SAMPLE_RATE).unwrap();
        for chunk in song.samples.chunks_exact(SpectralDesc::HOP_SIZE) {
            spectral_desc.do_(chunk).unwrap();
        }
        let expected_values = [0.97266, -0.960_992_6];
        for (expected, actual) in expected_values
            .iter()
            .zip(spectral_desc.get_centroid().iter())
        {
            // original test wanted absolute error < 0.00001
            // assert!(0.00001 > (expected - actual).abs(), "{expected} !~= {actual}");
            let relative_error = (expected - actual).abs() / expected.abs();
            assert!(
                relative_error < 0.039,
                "relative error: {relative_error}, expected: {expected}, actual: {actual}"
            );
        }
    }
}