mecomp_analysis/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
//! This library contains stuff for song analysis and feature extraction.
//!
//! A lot of the code in this library is inspired by, or directly pulled from, [bliss-rs](https://github.com/Polochon-street/bliss-rs).
//! We don't simply use bliss-rs because I don't want to bring in an ffmpeg dependency, and bliss-rs also has a lot of features that I don't need.
//! (for example, I don't need to decode tags, process playlists, etc. etc., I'm doing all of that myself already)
//!
//! We use rodio to decode the audio file (overkill, but we already have the dependency for audio playback so may as well),
//! We use rubato to resample the audio file to 22050 Hz.
pub mod chroma;
pub mod clustering;
pub mod decoder;
pub mod errors;
pub mod misc;
pub mod temporal;
pub mod timbral;
pub mod utils;
use std::{ops::Index, path::PathBuf};
use misc::LoudnessDesc;
use serde::{Deserialize, Serialize};
use strum::{EnumCount, EnumIter, IntoEnumIterator};
use chroma::ChromaDesc;
use errors::{AnalysisError, AnalysisResult};
use temporal::BPMDesc;
use timbral::{SpectralDesc, ZeroCrossingRateDesc};
/// The resampled audio data used for analysis.
///
/// Must be in mono (1 channel), with a sample rate of 22050 Hz.
#[derive(Debug)]
pub struct ResampledAudio {
pub path: PathBuf,
pub samples: Vec<f32>,
}
impl TryInto<Analysis> for ResampledAudio {
type Error = AnalysisError;
fn try_into(self) -> Result<Analysis, Self::Error> {
Analysis::from_samples(&self)
}
}
/// The sampling rate used for the analysis.
pub const SAMPLE_RATE: u32 = 22050;
#[derive(Debug, EnumIter, EnumCount)]
/// Indexes different fields of an Analysis.
///
/// Prints the tempo value of an analysis.
///
/// Note that this should mostly be used for debugging / distance metric
/// customization purposes.
#[allow(missing_docs, clippy::module_name_repetitions)]
pub enum AnalysisIndex {
Tempo,
Zcr,
MeanSpectralCentroid,
StdDeviationSpectralCentroid,
MeanSpectralRolloff,
StdDeviationSpectralRolloff,
MeanSpectralFlatness,
StdDeviationSpectralFlatness,
MeanLoudness,
StdDeviationLoudness,
Chroma1,
Chroma2,
Chroma3,
Chroma4,
Chroma5,
Chroma6,
Chroma7,
Chroma8,
Chroma9,
Chroma10,
}
/// The Type of individual features
pub type Feature = f64;
/// The number of features used in `Analysis`
pub const NUMBER_FEATURES: usize = AnalysisIndex::COUNT;
#[derive(Default, PartialEq, Clone, Copy, Serialize, Deserialize)]
/// Object holding the results of the song's analysis.
///
/// Only use it if you want to have an in-depth look of what is
/// happening behind the scene, or make a distance metric yourself.
///
/// Under the hood, it is just an array of f32 holding different numeric
/// features.
///
/// For more info on the different features, build the
/// documentation with private items included using
/// `cargo doc --document-private-items`, and / or read up
/// [this document](https://lelele.io/thesis.pdf), that contains a description
/// on most of the features, except the chroma ones, which are documented
/// directly in this code.
pub struct Analysis {
pub(crate) internal_analysis: [Feature; NUMBER_FEATURES],
}
impl Index<AnalysisIndex> for Analysis {
type Output = Feature;
fn index(&self, index: AnalysisIndex) -> &Feature {
&self.internal_analysis[index as usize]
}
}
impl Index<usize> for Analysis {
type Output = Feature;
fn index(&self, index: usize) -> &Feature {
&self.internal_analysis[index]
}
}
impl std::fmt::Debug for Analysis {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut debug_struct = f.debug_struct("Analysis");
for feature in AnalysisIndex::iter() {
debug_struct.field(&format!("{feature:?}"), &self[feature]);
}
debug_struct.finish()?;
f.write_str(&format!(" /* {:?} */", &self.as_vec()))
}
}
impl Analysis {
/// Create a new Analysis object.
///
/// Usually not needed, unless you have already computed and stored
/// features somewhere, and need to recreate a Song with an already
/// existing Analysis yourself.
#[must_use]
pub const fn new(analysis: [Feature; NUMBER_FEATURES]) -> Self {
Self {
internal_analysis: analysis,
}
}
/// Creates a new `Analysis` object from a `Vec<Feature>`.
///
/// invariant: `features.len() == NUMBER_FEATURES`
///
/// # Errors
///
/// This function will return an error if the length of the features is not equal to `NUMBER_FEATURES`.
pub fn from_vec(features: Vec<Feature>) -> Result<Self, AnalysisError> {
features
.try_into()
.map_err(|_| AnalysisError::InvalidFeaturesLen)
.map(Self::new)
}
/// Return the inner array of the analysis.
/// This is mostly useful if you want to store the features somewhere.
#[must_use]
pub const fn inner(&self) -> &[Feature; NUMBER_FEATURES] {
&self.internal_analysis
}
/// Return a `Vec<f32>` representing the analysis' features.
///
/// Particularly useful if you want iterate through the values to store
/// them somewhere.
#[must_use]
pub fn as_vec(&self) -> Vec<Feature> {
self.internal_analysis.to_vec()
}
/// Create an `Analysis` object from a `ResampledAudio`.
/// This is the main function you should use to create an `Analysis` object.
/// It will compute all the features from the audio samples.
/// You can get a `ResampledAudio` object by using a `Decoder` to decode an audio file.
///
/// # Errors
///
/// This function will return an error if the samples are empty or too short.
/// Or if there is an error during the analysis.
///
/// # Panics
///
/// This function will panic it cannot join the threads.
pub fn from_samples(audio: &ResampledAudio) -> AnalysisResult<Self> {
let largest_window = vec![
BPMDesc::WINDOW_SIZE,
ChromaDesc::WINDOW_SIZE,
SpectralDesc::WINDOW_SIZE,
LoudnessDesc::WINDOW_SIZE,
]
.into_iter()
.max()
.unwrap();
if audio.samples.len() < largest_window {
return Err(AnalysisError::EmptySamples);
}
std::thread::scope(|s| -> AnalysisResult<Self> {
let child_tempo: std::thread::ScopedJoinHandle<AnalysisResult<Feature>> =
s.spawn(|| {
let mut tempo_desc = BPMDesc::new(SAMPLE_RATE)?;
let windows = audio
.samples
.windows(BPMDesc::WINDOW_SIZE)
.step_by(BPMDesc::HOP_SIZE);
for window in windows {
tempo_desc.do_(window)?;
}
Ok(tempo_desc.get_value())
});
let child_chroma: std::thread::ScopedJoinHandle<AnalysisResult<Vec<Feature>>> = s
.spawn(|| {
let mut chroma_desc = ChromaDesc::new(SAMPLE_RATE, 12);
chroma_desc.do_(&audio.samples)?;
Ok(chroma_desc.get_value())
});
#[allow(clippy::type_complexity)]
let child_timbral: std::thread::ScopedJoinHandle<
AnalysisResult<(Vec<Feature>, Vec<Feature>, Vec<Feature>)>,
> = s.spawn(|| {
let mut spectral_desc = SpectralDesc::new(SAMPLE_RATE)?;
let windows = audio
.samples
.windows(SpectralDesc::WINDOW_SIZE)
.step_by(SpectralDesc::HOP_SIZE);
for window in windows {
spectral_desc.do_(window)?;
}
let centroid = spectral_desc.get_centroid();
let rolloff = spectral_desc.get_rolloff();
let flatness = spectral_desc.get_flatness();
Ok((centroid, rolloff, flatness))
});
let child_zcr: std::thread::ScopedJoinHandle<AnalysisResult<Feature>> = s.spawn(|| {
let mut zcr_desc = ZeroCrossingRateDesc::default();
zcr_desc.do_(&audio.samples);
Ok(zcr_desc.get_value())
});
let child_loudness: std::thread::ScopedJoinHandle<AnalysisResult<Vec<Feature>>> = s
.spawn(|| {
let mut loudness_desc = LoudnessDesc::default();
let windows = audio.samples.chunks(LoudnessDesc::WINDOW_SIZE);
for window in windows {
loudness_desc.do_(window);
}
Ok(loudness_desc.get_value())
});
// Non-streaming approach for that one
let tempo = child_tempo.join().unwrap()?;
let chroma = child_chroma.join().unwrap()?;
let (centroid, rolloff, flatness) = child_timbral.join().unwrap()?;
let loudness = child_loudness.join().unwrap()?;
let zcr = child_zcr.join().unwrap()?;
let mut result = vec![tempo, zcr];
result.extend_from_slice(¢roid);
result.extend_from_slice(&rolloff);
result.extend_from_slice(&flatness);
result.extend_from_slice(&loudness);
result.extend_from_slice(&chroma);
let array: [Feature; NUMBER_FEATURES] = result
.try_into()
.map_err(|_| AnalysisError::InvalidFeaturesLen)?;
Ok(Self::new(array))
})
}
}