1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
//! MCP2003A LIN Transceiver Library
//!
//! ⚠️ WORK IN PROGRESS
//!
//! This library provides an `embedded-hal` abstraction for the MCP2003A LIN transceiver using UART
//! and a GPIO output pin for the break signal.
//!
//! LIN (Local Interconnect Network) is a serial network protocol used in automotive and industrial applications.
//! Most automobiles on the road today have several LIN bus networks for various systems like climate control,
//! power windows, lighting, and more.
//!
//! # MCP2003A
//!
//! The MCP2003A is a LIN transceiver that provides a physical interface between a LIN master and the LIN bus.
//! As such, this code is intended to be used on a LIN master device that communicates with LIN slave devices.
//!
//! See more:
//! - [MCP2003A Product Page](https://www.microchip.com/wwwproducts/en/MCP2003A)
//! - [MCP2003A Datasheet](https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/20002230G.pdf)
//!
#![no_std]
use embedded_hal::delay::DelayNs;
use embedded_hal::digital::OutputPin;
use embedded_hal_nb::serial::{Read as UartRead, Write as UartWrite};
pub mod config;
use config::*;
#[derive(Debug)]
pub enum Mcp2003aError<E> {
UartError(embedded_hal_nb::nb::Error<E>),
UartWriteNotReady,
LinDeviceNoResponse,
}
/// MCP2003A LIN Transceiver
pub struct Mcp2003a<UART, GPIO, DELAY> {
uart: UART,
break_pin: GPIO,
delay: DELAY,
config: LinBusConfig,
}
impl<UART, GPIO, DELAY, E> Mcp2003a<UART, GPIO, DELAY>
where
UART: UartRead<Error = E> + UartWrite<Error = E>,
GPIO: OutputPin,
DELAY: DelayNs,
{
/// Create a new MCP2003A transceiver instance.
///
/// # Arguments
///
/// * `uart` - UART interface for data communication to and from the transceiver.
/// * `break_pin` - GPIO pin for the break signal.
/// * `delay` - Delay implementation for break signal timing.
/// * `config` - Configuration for the LIN bus speed and break duration.
pub fn new(uart: UART, break_pin: GPIO, delay: DELAY, config: LinBusConfig) -> Self {
Mcp2003a {
uart,
break_pin,
delay,
config,
}
}
/// Send a break signal on the LIN bus, pausing execution for at least 730 microseconds (13 bits).
fn send_break(&mut self) {
// Calculate the duration of the break signal
let bit_period_ns = self.config.speed.get_bit_period_ns();
let break_duration_ns = self.config.break_duration.get_duration_ns(bit_period_ns);
// Start the break
self.break_pin.set_high().unwrap();
// Break for the duration based on baud rate
self.delay.delay_ns(break_duration_ns);
// End the break
self.break_pin.set_low().unwrap();
// Break delimiter is 1 bit time
self.delay.delay_ns(bit_period_ns);
}
/// Send a wakeup signal on the LIN bus, pausing execution for at least 250 microseconds.
///
/// Note: there is an additional delay of the configured wakeup duration after the wakeup signal
/// to ensure the bus devices are ready to receive frames after activation.
pub fn send_wakeup(&mut self) {
// Calculate the duration of the wakeup signal
let wakeup_duration_ns = match self.config.wakeup_duration {
LinWakeupDuration::Minimum250Microseconds => 250_000,
LinWakeupDuration::Minimum250MicrosecondsPlus(us) => 250_000 + us,
LinWakeupDuration::Maximum5Milliseconds => 5_000_000,
};
// Ensure the wakeup duration is less than 5 milliseconds
assert!(
wakeup_duration_ns <= 5_000_000,
"Wakeup duration must be less than 5 milliseconds"
);
// Start the wakeup signal
self.break_pin.set_high().unwrap();
// Wakeup for the duration
self.delay.delay_ns(wakeup_duration_ns);
// End the wakeup signal
self.break_pin.set_low().unwrap();
// Delay after wakeup signal
self.delay.delay_ns(wakeup_duration_ns);
}
/// Send a frame on the LIN bus with the given ID, data, and checksum.
/// The data length must be between 0 and 8 bytes.
///
/// Note: Inter-frame space is applied after sending the frame.
pub fn send_frame(
&mut self,
id: u8,
data: &[u8],
checksum: u8,
) -> Result<[u8; 11], Mcp2003aError<E>> {
// Calculate the length of the data
assert!(
data.len() <= 8 && data.len() > 0,
"Data length must be between 1 and 8 bytes"
);
let data_len = data.len();
// Calculate the frame
let mut frame = [0; 11];
// This is the constant value to lead every frame with per the LIN specification.
// In bits, this is "10101010" or "0x55" in hex.
frame[0] = 0x55;
frame[1] = id;
frame[2..2 + data_len].copy_from_slice(data);
frame[2 + data_len] = checksum;
// Send the break signal
self.send_break();
// Write the frame to the UART
for byte in frame.iter() {
match self.uart.write(*byte) {
Ok(_) => (),
Err(e) => return Err(Mcp2003aError::UartError(e)),
}
}
// Inter-frame space delay
match self.config.inter_frame_space {
LinInterFrameSpace::None => (),
LinInterFrameSpace::DelayMicroseconds(us) => self.delay.delay_ns(us as u32 * 1_000),
LinInterFrameSpace::DelayMilliseconds(ms) => self.delay.delay_ns(ms as u32 * 1_000_000),
}
Ok(frame)
}
/// Read a frame from the LIN bus with the given ID into the buffer.
/// Returns the number of bytes read into the buffer.
///
/// Note: Inter-frame space is applied after reading the frame.
pub fn read_frame(&mut self, id: u8, buffer: &mut [u8]) -> Result<usize, Mcp2003aError<E>> {
// Send the break signal to notify the device of the start of a frame
self.send_break();
// Write the header to UART
let header = [0x55, id];
for byte in header.iter() {
match self.uart.write(*byte) {
Ok(_) => (),
Err(e) => return Err(Mcp2003aError::UartError(e)),
}
}
// Delay to ensure the header has time to be received and responded to
match self.config.read_device_response_timeout {
LinReadDeviceResponseTimeout::None => (),
LinReadDeviceResponseTimeout::DelayMicroseconds(us) => {
self.delay.delay_ns(us as u32 * 1_000)
}
LinReadDeviceResponseTimeout::DelayMilliseconds(ms) => {
self.delay.delay_ns(ms as u32 * 1_000_000)
}
}
// Read the response from the device
let mut len = 0;
while len < buffer.len() {
match self.uart.read() {
Ok(byte) => {
buffer[len] = byte;
len += 1;
}
Err(_) => break,
}
}
// Delay to ensure the frame is read
match self.config.inter_frame_space {
LinInterFrameSpace::None => (),
LinInterFrameSpace::DelayMicroseconds(us) => self.delay.delay_ns(us as u32 * 1_000),
LinInterFrameSpace::DelayMilliseconds(ms) => self.delay.delay_ns(ms as u32 * 1_000_000),
}
if len == 0 {
return Err(Mcp2003aError::LinDeviceNoResponse);
}
Ok(len)
}
}