1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
//! This package generates various scalings (and matchings) of real sparse matrices.
//!
//! Given a **symmetric** matrix `A`, it finds a diagonal matrix `D`
//! such that the scaled matrix
//!
//! Â = DAD
//!
//! has specific numerical properties.
//!
//! Given an **unsymmetric** or **rectangular** matrix `A`, it finds
//! diagonal matrices `D`<sub>`r`</sub> and `D`<sub>`c`</sub> such that the scaled matrix
//!
//! Â = D_r A D_c
//!
//! has specific numerical properties.
//!
//! The specific numerical properties delivered depends on the algorithm used:
//!
//! **Matching-based**
//! algorithms scale `A` such that the maximum (absolute) value in each row
//! and column of `Â` is exactly `1.0`, where the entries of
//! maximum value form a maximum cardinality matching. The
//! Hungarian algorithm delivers an optimal matching
//! slowly, whereas the auction algorithm delivers an
//! approximate matching quickly.
//!
//! **Norm-equilibration**
//! algorithms scale `A` such that the infinity norm of each row and
//! column of `Â` is `1.0 ± τ` (for some user specified
//! tolerance `τ`).
pub use *;
pub use *;
pub use *;
pub use *;