matterdb 1.2.0

Persistent storage implementation based on RocksDB.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
//! Migration utilities.
//!
//! # Stability
//!
//! The entirety of this module is considered unstable. While the supported functionality
//! is unlikely to break, the implementation details may change in the following releases.
//!
//! # Migration workflow
//!
//! **Migration** refers to the ability to update data in indexes, remove indexes,
//! change index type, create new indexes, and package these changes in a way that they
//! can be atomically committed or rolled back. Accumulating changes in the migration,
//! on the other hand, can be performed iteratively, including after a process shutdown.
//!
//! Each migration is confined to a *namespace*, defined in a similar way as [`Prefixed`]
//! accesses. For example, namespace `test` concerns indexes with an address starting with
//! `test.`, such as `test.foo` or `(test.bar, 1_u32)`, but not `test` or `test_.foo`.
//! The namespace can be accessed via [`Migration`].
//!
//! Migration is non-destructive, i.e., does not remove the old versions of migrated indexes.
//! Instead, new indexes are created in a separate namespace. For example, index `foo`
//! in the migration namespace `test` and the original `test.foo` index can peacefully coexist
//! and have separate data and even different types. The movement of data is performed only
//! when the migration is finalized.
//!
//! Retaining an index in the migration is a no op. *Removing* an index is explicit; it needs
//! to be performed via [`create_tombstone`] method. Although tombstones do not contain data,
//! they behave like indexes in other regards. For example, it is impossible to create a tombstone
//! and then create an ordinary index at the same address, or vice versa.
//!
//! A migration can also store temporary data in a [`Scratchpad`]. This data will be removed
//! when the migration is finalized.
//!
//! Indexes created within a migration are not [aggregated] in the default state hash. Instead,
//! they are placed in a separate namespace, the aggregator and state hash for which can be
//! obtained via respective [`Migration`] methods.
//!
//! It is possible to periodically persist migrated data to the database
//! (indeed, this is a best practice to avoid out-of-memory errors). It is even possible
//! to restart the process handling the migration, provided it can recover from such a restart
//! on the application level. To assist with fault tolerance, use [persistent iterators].
//!
//! # Finalizing Migration
//!
//! To finalize a migration, one needs to call [`flush_migration`]. This will replace
//! old index data with new, remove indexes marked with tombstones, and return migrated indexes
//! to the default state aggregator. To roll back a migration,
//! use [`rollback_migration`]. This will remove the new index data and corresponding metadata.
//! Both `flush_migration` and `rollback_migration` will remove the `Scratchpad` associated
//! with the migration.
//!
//! [`Migration`]: struct.Migration.html
//! [`Prefixed`]: ../access/struct.Prefixed.html
//! [`create_tombstone`]: struct.Migration.html#method.create_tombstone
//! [`Scratchpad`]: struct.Scratchpad.html
//! [aggregated]: ../index.html#state-aggregation
//! [persistent iterators]: struct.PersistentIter.html
//! [`flush_migration`]: fn.flush_migration.html
//! [`rollback_migration`]: fn.rollback_migration.html
//!
//! # Examples
//!
//! None yet.

pub use self::persistent_iter::{PersistentIter, PersistentIters, PersistentKeys};

use thiserror::Error;

use std::{
    fmt,
    sync::{
        atomic::{AtomicBool, Ordering},
        Arc,
    },
};

use crate::{
    access::{Access, AccessError, Prefixed, RawAccess},
    validation::{assert_valid_name_component, check_index_valid_full_name},
    views::{
        AsReadonly, GroupKeys, IndexAddress, IndexMetadata, IndexType, IndexesPool, RawAccessMut,
        View, ViewWithMetadata,
    },
    BinaryKey, Database, Fork, ReadonlyFork,
};

mod persistent_iter;

/// Name of the column family used to store `Scratchpad`s.
const SCRATCHPAD_NAME: &str = "__scratchpad__";

/// Access to migrated indexes.
///
/// `Migration` is conceptually similar to a [`Prefixed`] access. For example, an index with
/// address `"list"` in a migration `Migration::new("foo", _)` will map to the address `"foo.list"`
/// after the migration is flushed. The major difference with `Prefixed` is that the indexes
/// in a migration cannot be accessed in any other way. That is, it is impossible to access
/// an index in a migration without constructing a `Migration` object first.
///
/// [`Prefixed`]: ../access/struct.Prefixed.html
#[derive(Debug, Clone)]
pub struct Migration<T> {
    access: T,
    namespace: String,
}

// **NB.** Must not be made public! This would allow the caller to violate access restrictions
// imposed by `Migration`.
impl<T> Migration<T> {
    pub(crate) fn access(&self) -> &T {
        &self.access
    }

    pub(crate) fn into_parts(self) -> (String, T) {
        (self.namespace, self.access)
    }
}

impl<T: RawAccess> Migration<T> {
    /// Creates a migration in the specified namespace.
    pub fn new(namespace: impl Into<String>, access: T) -> Self {
        Self {
            namespace: namespace.into(),
            access,
        }
    }
}

impl<T: RawAccessMut> Migration<T> {
    /// Marks an index with the specified address as removed during migration.
    ///
    /// # Panics
    ///
    /// Panics if an index already exists at the specified address.
    pub fn create_tombstone<I>(&self, addr: I)
    where
        I: Into<IndexAddress>,
    {
        self.clone()
            .get_or_create_view(addr.into(), IndexType::Tombstone)
            .unwrap_or_else(|e| panic!("MerkleDB error: {}", e));
    }
}

impl<T: RawAccess> Access for Migration<T> {
    type Base = T;

    fn get_index_metadata(self, addr: IndexAddress) -> Result<Option<IndexMetadata>, AccessError> {
        let mut prefixed_addr = addr.prepend_name(&self.namespace);
        prefixed_addr.set_in_migration();
        self.access.get_index_metadata(prefixed_addr)
    }

    fn get_or_create_view(
        self,
        addr: IndexAddress,
        index_type: IndexType,
    ) -> Result<ViewWithMetadata<Self::Base>, AccessError> {
        let mut prefixed_addr = addr.prepend_name(&self.namespace);
        prefixed_addr.set_in_migration();
        self.access.get_or_create_view(prefixed_addr, index_type)
    }

    fn group_keys<K>(self, base_addr: IndexAddress) -> GroupKeys<Self::Base, K>
    where
        K: BinaryKey + ?Sized,
        Self::Base: AsReadonly<Readonly = Self::Base>,
    {
        let mut prefixed_addr = base_addr.prepend_name(&self.namespace);
        prefixed_addr.set_in_migration();
        self.access.group_keys(prefixed_addr)
    }
}

/// Access to temporary data that can be used during migration. The scratchpad is cleared
/// at the end of the migration, regardless of whether the migration is successful.
///
/// Like `Migration`s, `Scratchpad`s are separated via namespaces. Scratchpads are optimized
/// for small amounts of data per index. Indexes in a `Scratchpad` are not aggregated into
/// the overall database state or the migration state.
#[derive(Debug, Clone)]
pub struct Scratchpad<T> {
    access: T,
    namespace: String,
}

// **NB.** Must not be made public! This would allow the caller to violate access restrictions
// imposed by `Scratchpad`.
impl<T> Scratchpad<T> {
    pub(crate) fn access(&self) -> &T {
        &self.access
    }

    pub(crate) fn into_parts(self) -> (String, T) {
        (self.namespace, self.access)
    }
}

impl<T: RawAccess> Scratchpad<T> {
    /// Creates a scratchpad in the specified namespace.
    pub fn new(namespace: impl Into<String>, access: T) -> Self {
        Self {
            namespace: namespace.into(),
            access,
        }
    }

    fn get_scratchpad_addr(&self, addr: IndexAddress) -> IndexAddress {
        let prefixed_addr = addr.prepend_name(&self.namespace);
        IndexAddress::from_root(SCRATCHPAD_NAME).append_key(&prefixed_addr.fully_qualified_name())
    }

    fn get_scratchpad_prefix(&self, addr: IndexAddress) -> IndexAddress {
        let prefixed_addr = addr.prepend_name(&self.namespace);
        IndexAddress::from_root(SCRATCHPAD_NAME).append_key(&prefixed_addr.qualified_prefix())
    }
}

impl<T: RawAccessMut> Scratchpad<T> {
    /// Removes all indexes and their data from the scratchpad.
    ///
    /// # Panics
    ///
    /// This operation will panic if any of the removed indexes are borrowed.
    fn clear(&self) {
        let addr = self.get_scratchpad_addr(IndexAddress::default());
        let addr = addr.append_key(&b'.');
        let removed = IndexesPool::new(self.access.clone()).remove_indexes(&addr);
        for resolved_addr in removed {
            View::new(self.access.clone(), resolved_addr).clear();
        }
    }
}

impl<T: RawAccess> Access for Scratchpad<T> {
    type Base = T;

    fn get_index_metadata(self, addr: IndexAddress) -> Result<Option<IndexMetadata>, AccessError> {
        let addr = self.get_scratchpad_addr(addr);
        Ok(ViewWithMetadata::get_metadata_unchecked(self.access, &addr))
    }

    fn get_or_create_view(
        self,
        addr: IndexAddress,
        index_type: IndexType,
    ) -> Result<ViewWithMetadata<Self::Base>, AccessError> {
        // Since we transform the address into `id_in_group`, we need to ensure that addresses
        // cannot alias each other. We do this by running the sanity check on the original address.
        if let Err(kind) = check_index_valid_full_name(addr.name()) {
            return Err(AccessError { addr, kind });
        }
        let addr = self.get_scratchpad_addr(addr);
        ViewWithMetadata::get_or_create_unchecked(self.access, &addr, index_type)
    }

    fn group_keys<K>(self, base_addr: IndexAddress) -> GroupKeys<Self::Base, K>
    where
        K: BinaryKey + ?Sized,
        Self::Base: AsReadonly<Readonly = Self::Base>,
    {
        let base_addr = self.get_scratchpad_prefix(base_addr);
        self.access.group_keys(base_addr)
    }
}

/// Migration helper.
///
/// # Examples
///
/// See the [module docs](index.html) for a basic example of usage.
///
/// ## Aborting migration
///
/// `MigrationHelper` offers [`AbortHandle`] to abort migration logic. Once aborted, `MigrationHelper`
/// does not allow to merge changes to the database; the relevant methods will return
/// [`MigrationError::Aborted`]. This is important, e.g., to prevent unnecessary writes
/// to the database.
///
/// [`AbortHandle`]: struct.AbortHandle.html
/// [`MigrationError::Aborted`]: enum.MigrationError.html#variant.Aborted
///
/// ```
/// # use assert_matches::assert_matches;
/// # use matterdb::{access::CopyAccessExt, TemporaryDB};
/// # use matterdb::migration::{MigrationHelper, MigrationError};
/// # use std::{sync::mpsc, thread, time::Duration};
/// let db = TemporaryDB::new();
/// // Since `MigrationHelper` cannot be sent between threads, we instantiate it
/// // in a newly spawned thread and move the helper handle to the main thread.
/// let (tx, rx) = mpsc::channel();
/// let helper_thread = thread::spawn(move || {
///     let (mut helper, handle) = MigrationHelper::with_handle(db, "test");
///     tx.send(handle).unwrap();
///     // Emulate some work...
///     thread::sleep(Duration::from_millis(50));
///     // Attempt to merge changes to DB.
///     helper.merge()
/// });
///
/// let handle = rx.recv().unwrap();
/// // Migration is automatically aborted when the handle is dropped.
/// drop(handle);
/// let res: Result<(), MigrationError> = helper_thread.join().unwrap();
/// assert_matches!(res, Err(MigrationError::Aborted));
/// ```
///
// TODO: The following section was left because I'm not sure what to do with it right now.
// ## Using persistent iterators
//
// `MigrationHelper` offers the [`iter_loop`](#method.iter_loop) method, which allows to further
// simplify working with [persistent iterators].
//
// Say we want to migrate `MapIndex` data to a `ProofMapIndex` while merging changes to the DB
// from time to time. To do this, we use the following script:
//
// ```
// # use matterdb::{access::AccessExt, TemporaryDB};
// # use matterdb::migration::{MigrationHelper, MigrationError};
// # fn main() -> Result<(), MigrationError> {
// /// Number of accounts processed per DB merge.
// const CHUNK_SIZE: usize = 100;
//
// let db = TemporaryDB::new();
// let mut helper = MigrationHelper::new(db, "test");
// helper.iter_loop(|helper, iters| {
//     // The data before migration is stored in this map
//     let old_map = helper.old_data().get_map::<_, str, u64>("wallets");
//     // ...and the new data is in this merkelized map.
//     let mut new_map = helper.new_data().get_map::<_, str, u64>("wallets");
//
//     // Create an iterator over the old data.
//     let iter = iters.create("wallets", &old_map);
//     // Take a fixed amount of records from the iterator and migrate them.
//     // Since `iter` is persistent, it will not return the same record twice,
//     // even if this script is restarted.
//     for (name, balance) in iter.take(CHUNK_SIZE) {
//         new_map.put(&name, balance);
//     }
// })?;
// // Here, the iterator has run out of items. The script can now perform
// // other actions if necessary.
// # Ok(())
// # }
// ```
//
// [persistent iterators]: struct.PersistentIter.html
pub struct MigrationHelper {
    db: Arc<dyn Database>,
    abort_handle: Box<dyn AbortMigration>,
    // Only equals `None` during merges.
    fork: Option<Fork>,
    namespace: String,
}

impl fmt::Debug for MigrationHelper {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter
            .debug_tuple("MigrationHelper")
            .field(&self.namespace)
            .finish()
    }
}

impl MigrationHelper {
    /// Creates a new helper.
    pub fn new(db: impl Into<Arc<dyn Database>>, namespace: &str) -> Self {
        assert_valid_name_component(namespace);

        let db = db.into();
        Self {
            fork: Some(db.fork()),
            db,
            abort_handle: Box::new(()),
            namespace: namespace.to_owned(),
        }
    }

    /// Creates a new helper together with the abort handle. Unlike the `MigrationHelper`,
    /// the handle may be sent between threads. The handle allows to determine whether the migration
    /// helper was completed, and allows to abort the migration by preventing further writes
    /// to the database.
    pub fn with_handle(db: impl Into<Arc<dyn Database>>, namespace: &str) -> (Self, AbortHandle) {
        let mut this = Self::new(db, namespace);
        let abort_handle = AbortHandle {
            inner: Arc::new(AtomicBool::default()),
        };
        this.set_abort_handle(abort_handle.clone_inner());
        (this, abort_handle)
    }

    /// Sets the abort handle for the helper.
    ///
    /// # Stability
    ///
    /// This method is considered experimental. Its signature may be changed or it may be removed
    /// in the future.
    #[doc(hidden)]
    pub fn set_abort_handle(&mut self, abort_handle: impl AbortMigration + 'static) {
        self.abort_handle = Box::new(abort_handle);
    }

    fn fork_ref(&self) -> &Fork {
        // `unwrap` is safe due to the way we define `fork`
        self.fork.as_ref().unwrap()
    }

    /// Checks if the migration has been aborted.
    fn is_aborted(&self) -> bool {
        self.abort_handle.is_aborted()
    }

    /// Returns full access to the new version of migrated data.
    pub fn new_data(&self) -> Migration<&Fork> {
        Migration::new(&self.namespace, self.fork_ref())
    }

    /// Returns the scratchpad for temporary data to use during migration.
    pub fn scratchpad(&self) -> Scratchpad<&Fork> {
        Scratchpad::new(&self.namespace, self.fork_ref())
    }

    /// Returns readonly access to the old version of migrated data.
    pub fn old_data(&self) -> Prefixed<ReadonlyFork<'_>> {
        Prefixed::new(&self.namespace, self.fork_ref().readonly())
    }

    /// Merges the changes to the migrated data and the scratchpad to the database. Returns an error
    /// if the merge has failed.
    ///
    /// `merge` does not flush the migration; the migrated data remains in a separate namespace.
    /// Use [`flush_migration`] to flush the migrated data.
    ///
    /// [`flush_migration`]: fn.flush_migration.html
    pub fn merge(&mut self) -> Result<(), MigrationError> {
        let fork = self.fork.take().unwrap();
        let patch = fork.into_patch();
        if self.is_aborted() {
            Err(MigrationError::Aborted)
        } else {
            self.db.merge(patch).map_err(MigrationError::Merge)?;
            self.fork = Some(self.db.fork());
            Ok(())
        }
    }

    /// Executes the provided closure in a loop until all persistent iterators instantiated
    /// within the closure have ended. After each iteration, the changes in migrated data are
    /// merged to the database; an error is returned if this merge fails.
    ///
    /// If no iterators are instantiated within the closure, a single iteration will be performed.
    pub fn iter_loop(
        &mut self,
        mut step: impl FnMut(&Self, &mut PersistentIters<Scratchpad<&Fork>>),
    ) -> Result<(), MigrationError> {
        let mut should_break = false;
        while !should_break {
            let mut iterators = PersistentIters::new(self.scratchpad());
            step(self, &mut iterators);
            should_break = iterators.all_ended();
            self.merge()?;
        }
        Ok(())
    }

    /// Merges the changes to the migrated data and the migration scratchpad to the database.
    /// Returns hash representing migrated data state, or an error if the merge has failed.
    ///
    /// `finish` does not flush the migration; the migrated data remains in a separate namespace.
    /// Use [`flush_migration`] to flush the migrated data.
    ///
    /// [`flush_migration`]: fn.flush_migration.html
    pub fn finish(mut self) -> Result<(), MigrationError> {
        let patch = self.fork.take().unwrap().into_patch();
        if self.is_aborted() {
            Err(MigrationError::Aborted)
        } else {
            self.db.merge(patch).map_err(MigrationError::Merge)?;
            Ok(())
        }
    }
}

/// Errors emitted by `MigrationHelper` methods.
#[derive(Debug, Error)]
pub enum MigrationError {
    /// Failed to merge migration changes to database.
    #[error("Failed to merge migration changes to the database: {0}")]
    Merge(#[source] crate::Error),

    /// Migration has been aborted.
    #[error("Migration was aborted")]
    Aborted,
}

/// Denotes a communication channel between `MigrationHelper` and the outside world allowing
/// the helper to understand if the migration is aborted.
#[doc(hidden)]
pub trait AbortMigration: Send {
    /// Has the migration been aborted? `MigrationHelper` calls this method every time before it
    /// merges changes to the database. If the method returns `true`, the merge is cancelled
    /// and `MigrationHelper` returns `MigrationError::Aborted`.
    fn is_aborted(&self) -> bool;
}

impl AbortMigration for () {
    fn is_aborted(&self) -> bool {
        false
    }
}

impl AbortMigration for AbortHandle {
    fn is_aborted(&self) -> bool {
        self.inner.load(Ordering::SeqCst)
    }
}

/// Handle allowing to signal to `MigrationHelper` that the migration has been aborted.
/// Signalling is performed on handle drop, unless it is performed with [`forget`](#method.forget)
/// method.
#[derive(Debug)]
pub struct AbortHandle {
    inner: Arc<AtomicBool>,
}

impl Drop for AbortHandle {
    fn drop(&mut self) {
        self.inner.store(true, Ordering::SeqCst);
    }
}

impl AbortHandle {
    fn clone_inner(&self) -> Self {
        Self {
            inner: Arc::clone(&self.inner),
        }
    }

    /// Returns `true` if the `MigrationHelper` associated with this handle has been dropped.
    pub fn is_finished(&self) -> bool {
        Arc::strong_count(&self.inner) <= 1
    }

    /// Drops the handle without aborting the migration.
    pub fn forget(mut self) {
        self.inner = Arc::new(AtomicBool::default());
    }
}

/// Flushes the migration to the fork. Once the `fork` is merged, the migration is complete.
///
/// The following operations will be performed:
///
/// - Migrated indexes will replace their old versions
/// - Migrated indexes will be aggregated in the default namespace
/// - Indexes marked with tombstones will be removed
/// - Scratchpad associated with the migration will be cleared
///
/// # Safety
///
/// Flushing a migration must be performed on a `fork` which contains the final migration
/// changes. Not doing so **may break the state aggregation in the database.** A scenario when
/// this requirement would be violated is as follows:
///
/// 1. Start a database migration in a separate thread, constructing a `MigrationHelper` around
///   `Arc<dyn Database>`.
/// 2. Create a fork.
/// 3. Ensure that the migration is complete via some synchronization primitive.
/// 4. Call `flush_migration` on the fork from step 2.
///
/// In this scenario, a fork may not have the latest migration data because it was created before
/// the migration is complete. The correct workflow would be to swap steps 2 and 3, i.e.,
/// first ensure that the migration is complete and *then* create a fork in which it will be flushed.
pub fn flush_migration(fork: &mut Fork, namespace: &str) {
    fork.flush_migration(namespace);
    Scratchpad::new(namespace, &*fork).clear();
}

/// Rolls back the migration.
///
/// The following operations will be performed:
///
/// - Migrated indexes will be erased (both data and metadata)
/// - Scratchpad associated with the migration will be cleared
pub fn rollback_migration(fork: &mut Fork, namespace: &str) {
    fork.rollback_migration(namespace);
    Scratchpad::new(namespace, &*fork).clear();
}

#[cfg(test)]
mod tests {
    use super::{
        flush_migration, rollback_migration, AbortHandle, Arc, Database, IndexAddress, IndexType,
        Migration, MigrationError, MigrationHelper, Scratchpad, ViewWithMetadata, SCRATCHPAD_NAME,
    };
    use crate::{
        access::{AccessExt, CopyAccessExt, RawAccess},
        TemporaryDB,
    };

    use assert_matches::assert_matches;
    use std::{collections::HashMap, sync::mpsc, thread, time::Duration};

    #[test]
    fn in_memory_migration() {
        fn check_indexes<T: RawAccess + Copy>(view: T) {
            let list = view.get_list::<_, u64>("name.list");
            assert_eq!(list.len(), 2);
            assert_eq!(list.get(0), Some(4));
            assert_eq!(list.get(1), Some(5));
            assert_eq!(list.get(2), None);
            assert_eq!(list.iter().collect::<Vec<_>>(), vec![4, 5]);

            let map = view.get_map::<_, u64, i32>("name.map");
            assert_eq!(map.get(&1), Some(42));

            let set = view.get_key_set::<_, u8>("name.new");
            assert!(set.contains(&0));
            assert!(!set.contains(&1));

            let list = view.get_list::<_, u64>("name.untouched");
            assert_eq!(list.len(), 2);
            assert_eq!(list.get(0), Some(77));
            assert_eq!(list.iter().collect::<Vec<_>>(), vec![77, 88]);

            assert_eq!(view.get_entry("unrelated").get(), Some(1_u64));
            assert_eq!(view.get_entry("name1.unrelated").get(), Some(2_u64));
            let set = view.get_key_set::<_, String>("name.removed");
            assert_eq!(set.iter().count(), 0);
        }

        let db = TemporaryDB::new();
        let mut fork = db.fork();

        fork.get_list("name.list").extend(vec![1_u32, 2, 3]);
        fork.get_map("name.map").put(&1_u64, "!".to_owned());
        fork.get_key_set("name.removed").insert(&"!!!".to_owned());
        fork.get_list("name.untouched").extend(vec![77_u64, 88]);
        fork.get_entry("unrelated").set(1_u64);
        fork.get_entry("name1.unrelated").set(2_u64);

        // Start migration.
        let migration = Migration::new("name", &fork);
        migration.get_list("list").extend(vec![4_u64, 5]);
        migration.get_map("map").put(&1_u64, 42_i32);
        migration.get_key_set("new").insert(&0_u8);
        migration.create_tombstone("removed");

        fork.flush_migration("name");

        check_indexes(&fork);
        // The newly migrated indexes are emptied.
        let migration = Migration::new("name", &fork);
        assert!(migration.get_list::<_, u64>("list").is_empty());

        // Merge the fork and run the checks again.
        db.merge(fork.into_patch()).unwrap();
        let snapshot = db.snapshot();
        check_indexes(&snapshot);
    }

    #[test]
    fn migration_with_merges() {
        fn check_indexes<T: RawAccess + Copy>(view: T) {
            let list = view.get_list::<_, u64>("name.list");
            assert_eq!(list.len(), 4);
            assert_eq!(list.get(2), Some(6));
            assert_eq!(list.iter_from(1).collect::<Vec<_>>(), vec![5, 6, 7]);

            let map = view.get_map::<_, u64, i32>("name.map");
            assert_eq!(map.get(&1), None);
            assert_eq!(map.get(&2), Some(21));
            assert_eq!(map.get(&3), Some(7));
            assert_eq!(map.keys().collect::<Vec<_>>(), vec![2, 3]);

            // This entry should be removed.
            let entry = view.get_entry::<_, String>(("name.family", &1_u8));
            assert!(!entry.exists());
            // ...but this one should be retained.
            let entry = view.get_entry::<_, String>(("name.family", &2_u8));
            assert_eq!(entry.get().unwrap(), "!!");

            let entry = view.get_entry::<_, String>(("name.untouched", &2_u32));
            assert_eq!(entry.get().unwrap(), "??");

            assert_eq!(view.get_entry("unrelated").get(), Some(1_u64));
            assert_eq!(view.get_entry("name1.unrelated").get(), Some(2_u64));
            let set = view.get_key_set::<_, String>("name.removed");
            assert_eq!(set.iter().count(), 0);
        }

        let db = TemporaryDB::new();

        let fork = db.fork();
        fork.get_list("name.list").extend(vec![1_u32, 2, 3]);
        fork.get_map("name.map").put(&1_u64, "!".to_owned());
        fork.get_entry(("name.family", &1_u8)).set("!".to_owned());
        fork.get_entry(("name.family", &2_u8)).set("!!".to_owned());
        fork.get_entry(("name.untouched", &2_u32))
            .set("??".to_owned());
        fork.get_entry("unrelated").set(1_u64);
        fork.get_entry("name1.unrelated").set(2_u64);
        db.merge(fork.into_patch()).unwrap();

        let fork = db.fork();
        let migration = Migration::new("name", &fork);
        migration.get_list("list").extend(vec![4_u64, 5]);
        migration.get_map("map").put(&1_u64, 42_i32);
        migration.get_key_set("new").insert(&0_u8);
        migration.create_tombstone(("name.family", &3_u8));
        // ^-- Removing non-existing indexes is weird, but should work fine.
        db.merge(fork.into_patch()).unwrap();

        let mut fork = db.fork();
        {
            let migration = Migration::new("name", &fork);
            let mut list = migration.get_list::<_, u64>("list");
            assert_eq!(list.len(), 2);
            list.push(6);
            list.push(7);
            assert_eq!(list.len(), 4);

            let mut map = migration.get_map::<_, u64, i32>("map");
            map.clear();
            map.put(&2, 21);
            map.put(&3, 7);

            migration.create_tombstone(("family", &1_u8));
        }
        fork.flush_migration("name");

        check_indexes(&fork);
        db.merge(fork.into_patch()).unwrap();
        let snapshot = db.snapshot();
        check_indexes(&snapshot);
    }

    fn test_migration_rollback(with_merge: bool) {
        let db = TemporaryDB::new();
        let mut fork = db.fork();

        fork.get_entry("test.foo").set(1_u8);
        fork.get_list(("test.list", &1)).extend(vec![1_i32, 2, 3]);
        let migration = Migration::new("test", &fork);
        migration.get_entry("foo").set(2_u8);
        migration.create_tombstone(("list", &1));
        migration.get_key_set("new").insert(&"test".to_owned());

        if with_merge {
            db.merge(fork.into_patch()).unwrap();
            fork = db.fork();
        }
        fork.rollback_migration("test");
        assert_eq!(fork.get_entry::<_, u8>("test.foo").get(), Some(1));
        let patch = fork.into_patch();
        assert_eq!(patch.get_entry::<_, u8>("test.foo").get(), Some(1));
        assert_eq!(
            patch
                .get_list::<_, i32>(("test.list", &1))
                .iter()
                .collect::<Vec<_>>(),
            vec![1_i32, 2, 3]
        );

        let migration = Migration::new("test", &patch);
        assert!(!migration.get_entry::<_, u8>("foo").exists());
        // Since migrated indexes don't exist, it should be OK to assign new types to them.
        assert!(!migration.get_entry::<_, ()>(("list", &1)).exists());
        assert!(!migration.get_entry::<_, ()>("new").exists());
    }

    #[test]
    fn in_memory_migration_rollback() {
        test_migration_rollback(false);
    }

    #[test]
    fn migration_rollback_with_merge() {
        test_migration_rollback(true);
    }

    #[test]
    fn concurrent_borrow_of_original_and_migrated_index() {
        let db = TemporaryDB::new();
        let helper = MigrationHelper::new(db, "test");
        let old_entry = helper.old_data().get_entry::<_, u32>("entry");
        assert_eq!(old_entry.get(), None);
        let mut new_entry = helper.new_data().get_entry::<_, u32>("entry");
        new_entry.set(1);
        assert_eq!(old_entry.get(), None);
    }

    #[test]
    fn scratchpad_basics() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        let scratchpad = Scratchpad::new("test", &fork);
        scratchpad.get_entry("entry").set(1_u8);
        assert_eq!(scratchpad.get_entry::<_, u8>("entry").get(), Some(1));

        // Check entry address.
        {
            let addr: IndexAddress = (SCRATCHPAD_NAME, "test.entry").into();
            let view =
                ViewWithMetadata::get_or_create_unchecked(&fork, &addr, IndexType::Entry).unwrap();
            let (view, _) = view.into_parts::<()>();
            assert_eq!(view.get::<_, u8>(&()), Some(1));
        }

        scratchpad.get_list("list").extend(vec![2_u32, 3]);

        // Check that info persists to `Patch`es and `Snapshot`s.
        let patch = fork.into_patch();
        let scratchpad = Scratchpad::new("test", &patch);
        let list = scratchpad.get_list::<_, u32>("list");
        assert_eq!(list.len(), 2);
        assert_eq!(list.iter().collect::<Vec<_>>(), vec![2, 3]);
        db.merge(patch).unwrap();
        let snapshot = db.snapshot();
        let scratchpad = Scratchpad::new("test", &snapshot);
        let list = scratchpad.get_list::<_, u32>("list");
        assert_eq!(list.len(), 2);
        assert_eq!(list.iter().collect::<Vec<_>>(), vec![2, 3]);
    }

    #[test]
    fn scratchpad_address_resolution() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        let scratchpad = Scratchpad::new("test", &fork);
        scratchpad.get_entry(("entry", &5_u32)).set(1_u8);

        let addr: IndexAddress = (SCRATCHPAD_NAME, &b"test.entry\0\0\0\0\x05"[..]).into();
        let view =
            ViewWithMetadata::get_or_create_unchecked(&fork, &addr, IndexType::Entry).unwrap();
        let (view, _) = view.into_parts::<()>();
        assert_eq!(view.get::<_, u8>(&()), Some(1));
    }

    #[test]
    #[should_panic(expected = "Invalid characters used in name")]
    fn scratchpad_invalid_address() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        let scratchpad = Scratchpad::new("test", &fork);
        scratchpad.get_entry("entry\0key").set(1_u8);
    }

    #[test]
    fn clearing_scratchpad() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        let scratchpad = Scratchpad::new("test", &fork);
        scratchpad.get_entry("entry").set(1_u8);
        scratchpad
            .get_entry(("other_entry", &1_u32))
            .set("!!".to_owned());
        scratchpad.get_list("list").extend(vec![1, 2, 3]);
        scratchpad.clear();

        let scratchpad = Scratchpad::new("test", &fork);
        assert_eq!(scratchpad.index_type("entry"), None);
        assert_eq!(scratchpad.index_type(("other_entry", &1_u32)), None);
        assert_eq!(scratchpad.index_type("list"), None);

        let mut list = scratchpad.get_list::<_, u32>("list");
        assert!(list.is_empty());
        list.extend(vec![1, 2, 3]);
        assert_eq!(list.len(), 3);
        assert_eq!(list.iter().collect::<Vec<_>>(), vec![1, 2, 3]);
    }

    #[test]
    fn clearing_scratchpad_does_not_influence_other_scratchpads() {
        let db = TemporaryDB::new();
        let fork = db.fork();
        let scratchpad = Scratchpad::new("test", &fork);
        scratchpad.get_entry("entry").set(1_u8);
        scratchpad.get_list("list").extend(vec![1, 2, 3]);
        let other_scratchpad = Scratchpad::new("test_", &fork);
        other_scratchpad.get_entry("entry").set(2_u8);

        scratchpad.clear();
        let other_scratchpad = Scratchpad::new("test_", &fork);
        assert_eq!(other_scratchpad.get_entry::<_, u8>("entry").get(), Some(2));
    }

    #[test]
    fn scratchpad_is_cleared_after_migration() {
        let db = Arc::new(TemporaryDB::new());
        let mut helper = MigrationHelper::new(Arc::clone(&db) as Arc<dyn Database>, "test");
        helper.scratchpad().get_entry("entry").set(1_u8);
        helper.merge().unwrap();
        assert_eq!(
            helper.scratchpad().get_entry::<_, u8>("entry").get(),
            Some(1)
        );

        let mut fork = db.fork();
        flush_migration(&mut fork, "test");
        assert_eq!(Scratchpad::new("test", &fork).index_type("entry"), None);

        let helper = MigrationHelper::new(Arc::clone(&db) as Arc<dyn Database>, "test");
        helper.scratchpad().get_entry("entry").set(1_u8);
        rollback_migration(&mut fork, "test");
        assert_eq!(Scratchpad::new("test", &fork).index_type("entry"), None);
    }

    #[test]
    fn loop_iter_simple() -> Result<(), MigrationError> {
        const CHUNK_SIZE: usize = 2;
        const DATA: &[(&str, u64)] = &[
            ("Alice", 100),
            ("Bob", 75),
            ("Carol", 11),
            ("Dave", 99),
            ("Eve", 42),
        ];

        let db = TemporaryDB::new();
        // Create initial data for migration.
        let fork = db.fork();
        {
            let mut map = fork.get_map("test.balances");
            for &(name, balance) in DATA {
                map.put(name, balance);
            }
        }
        db.merge(fork.into_patch()).unwrap();

        let mut helper = MigrationHelper::new(db, "test");
        helper.iter_loop(|helper, iters| {
            let balances = helper.old_data().get_map::<_, str, u64>("balances");
            let mut new_balances = helper.new_data().get_map::<_, str, u64>("balances");
            for (name, balance) in iters.create("balances", &balances).take(CHUNK_SIZE) {
                new_balances.put(&name, balance + 10);
            }
        })?;

        // Check the data after migration.
        let old_balances: HashMap<_, _> = DATA.iter().copied().collect();
        let new_balances = helper.new_data().get_map::<_, str, u64>("balances");
        for (name, balance) in &new_balances {
            assert_eq!(balance, old_balances[&name.as_str()] + 10);
        }

        Ok(())
    }

    struct MigrationRig {
        thread_handle: thread::JoinHandle<Result<(), MigrationError>>,
        abort_handle: AbortHandle,
    }

    impl MigrationRig {
        fn new(db: &Arc<TemporaryDB>) -> Self {
            let db = Arc::clone(db) as Arc<dyn Database>;
            let (tx, rx) = mpsc::channel();
            let thread_handle = thread::spawn(move || {
                let (helper, handle) = MigrationHelper::with_handle(db, "test");
                tx.send(handle).unwrap();
                thread::sleep(Duration::from_millis(50));
                helper.new_data().get_entry("entry").set(1_u32);
                helper.finish()
            });

            Self {
                thread_handle,
                abort_handle: rx.recv().unwrap(),
            }
        }
    }

    #[test]
    fn aborting_migration() {
        let db = Arc::new(TemporaryDB::new());
        let rig = MigrationRig::new(&db);
        drop(rig.abort_handle);

        let res = rig.thread_handle.join().unwrap();
        assert_matches!(res.unwrap_err(), MigrationError::Aborted);
        let snapshot = db.snapshot();
        let migration = Migration::new("test", &snapshot);
        assert!(!migration.get_entry::<_, u32>("entry").exists());
    }

    #[test]
    fn forgetting_abort_handle() {
        let db = Arc::new(TemporaryDB::new());
        let rig = MigrationRig::new(&db);
        rig.abort_handle.forget();

        let res = rig.thread_handle.join().unwrap();
        res.unwrap();
        let snapshot = db.snapshot();
        let migration = Migration::new("test", &snapshot);
        assert_eq!(migration.get_entry::<_, u32>("entry").get(), Some(1));
    }

    #[test]
    fn abort_handle_is_finished() {
        let db = Arc::new(TemporaryDB::new());
        let rig = MigrationRig::new(&db);
        assert!(!rig.abort_handle.is_finished());
        rig.thread_handle.join().unwrap().unwrap();
        assert!(rig.abort_handle.is_finished());
    }
}