1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
use crate::statistics::distrib::{Continuous, ChiSquared};
use crate::algebra::abstr::Real;

/// G-Test
///
/// Fore more information:
/// <a href="https://de.wikipedia.org/wiki/G-Test">https://de.wikipedia.org/wiki/G-Test</a>
///
pub struct G<T>
{
	df: u32,
	g: T
}

impl<T> G<T>
	where T: Real
{
	///
	/// \sum_{i}{y_{i}} = n = \sum_i{xs_i}
	/// b = \sum_{i}{x_{i}}
	/// k = n/b
	/// xs_{i} = x{i}*k
	///
	/// x: observation
	/// y: expectation
	pub fn test_vector(x: &Vec<T>, y: &Vec<T>) -> G<T>
	{
		if x.len() != y.len()
		{
			panic!();
		}

		let df: u32 = (x.len() - 1) as u32;

		let mut n: T = T::zero();
		for y_i in y.iter()
		{
			n += *y_i;
		}

		let mut b: T = T::zero();
		for x_i in x.iter()
		{
			b += *x_i;
		}

		let k: T = n / b;

		let mut g: T = T::zero();

		for i in 0..x.len()
		{
			g += x[i] * (x[i]/ (y[i]/k)).ln()
		}

		G
		{
			df: df,
			g: T::from_f64(2.0) * g
		}
	}

	pub fn df(self: &Self) -> u32
	{
		self.df
	}

	pub fn g(self: &Self) -> T
	{
		self.g
	}

	pub fn p_value(self: &Self) -> T
	{
		let distrib: ChiSquared<T> = ChiSquared::new(self.df);
		T::one() - distrib.cdf(self.g)
	}
}