1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
use crate::algebra::linear::{Matrix};
use crate::algebra::abstr::{Field, Scalar};
use std::clone::Clone;
use serde::{Deserialize, Serialize};
use crate::elementary::Power;


/// QR decomposition
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct QRDec<T>
{
    q: Matrix<T>,
    r: Matrix<T>
}

impl<T> QRDec<T>
{
    pub(self) fn new(q: Matrix<T>, r: Matrix<T>) -> QRDec<T>
    {
        QRDec
        {
            q: q,
            r: r
        }
    }

    /// Return the q matrix of the QR decomposition
    ///
    /// # Arguments
    ///
    /// * `self`
    ///
    pub fn q(self: Self) -> Matrix<T>
    {
        return self.q;
    }

    /// Return the r matrix of the qr decomposition
    ///
    /// # Re
    pub fn r(self: Self) -> Matrix<T>
    {
        return self.r;
    }

    pub fn qr(self: Self) -> (Matrix<T>, Matrix<T>)
    {
        return (self.q, self.r);
    }
}

impl<T> Matrix<T>
    where T: Field + Scalar + Power
{
    /// QR Decomposition with Givens rotations
    ///
    /// A = QR \
    /// Q is an orthogonal matrix \
    /// R is an upper triangular matrix \
    ///
    /// # Panics
    ///
    /// if A is not a square matrix
    ///
    /// # Example
    ///
    /// ```
    /// use mathru::algebra::linear::{Matrix};
    ///
    /// let a: Matrix<f64> = Matrix::new(2, 2, vec![1.0, -2.0, 3.0, -7.0]);
    ///
    /// let (q, r): (Matrix<f64>, Matrix<f64>) = a.dec_qr().qr();
    ///
    /// ```
    pub fn dec_qr<'a>(self: &'a Self) -> QRDec<T>
    {
        let (m, n) = self.dim();
        assert!(m >= n);

        return self.dec_qr_r()
    }

    fn dec_qr_r<'a>(self: &'a Self) -> QRDec<T>
    {
        let mut q: Matrix<T> = Matrix::one(self.m);
        let mut r: Matrix<T> = self.clone();

        for j in 0..self.n
        {
            for i in (j + 1..self.m).rev()
            {
                let a_jj: T = *r.get(j, j);
                let a_ij: T = *r.get(i, j);
                //let k: T = a_jj.sgn();
                let p: T = (a_jj.clone() * a_jj.clone() + a_ij.clone() * a_ij.clone()).pow(&T::from_f64
                (0.5).unwrap());
                if (p != T::zero()) && (a_jj != T::zero()) && (a_ij != T::zero())
                {
                    let c : T = a_jj / p.clone();
                    let s : T = -a_ij / p;
                    let g_ij: Matrix<T> = Matrix::givens(r.m, i, j, c, s);

                    r = &g_ij * &r;
                    q = &g_ij * &q;
                }
            }
        }
        q = q.transpose();
        return QRDec::new(q, r);
    }
}