1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
use super::{Field, Scalar};
use crate::elementary::{Exponential, Hyperbolic, Power, Trigonometry};
use crate::algebra::abstr::{AbsDiffEq, RelativeEq};

macro_rules! impl_real
{
    ($($t:ty, $id:ident);*) =>
    {
    	$(
        impl Real for $t
        {

			fn ceil(&self) -> Self
			{
				(*self).ceil()
			}

			fn floor(&self) -> Self
			{
				(*self).floor()
			}

			fn euler_gamma() -> Self
			{
                0.5772156649015328606065
			}

			fn infinity() -> Self
			{
			    return Self::INFINITY
			}

			fn neg_infinity() -> Self
			{
			    return Self::NEG_INFINITY
			}
        }
        )*
    }
}

impl_real!(f32, f32; f64, f64);

/// Real number
///
///<https://en.wikipedia.org/wiki/Real_number>
pub trait Real: Field + Scalar + Exponential + Trigonometry + Power + Hyperbolic + AbsDiffEq<Epsilon = Self> + RelativeEq
{
    /// Returns the smallest integer greater than or equal to a number.
    fn ceil(&self) -> Self;

    /// Returns the largest integer less than or equal to a number.
    fn floor(&self) -> Self;

    fn min(self, a: Self) -> Self
    {
        if self <= a
        {
            self
        }
        else
        {
            a
        }
    }

    fn max(self, a: Self) -> Self
    {
        if self >= a
        {
            self
        }
        else
        {
            a
        }
    }

    /// Euler–Mascheroni constant
    fn euler_gamma() -> Self;

    fn infinity() -> Self;

    fn neg_infinity() -> Self;
}