1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use crate::{
    ast::{pat::PatKind, stmt::StmtKind, ty::TyKind},
    common::{BodyId, Safety, SpanId, Syncness},
    context::with_cx,
    ffi::{FfiOption, FfiSlice},
    span::{Ident, Span},
};

use super::{CommonExprData, ExprKind};

/// A block expression is one of the most fundamental expressions in Rust. It
/// is used by items and expressions to group statements together and express
/// scopes.
///
/// ```
/// //       vv The function body has an empty block
/// fn foo() {}
///
/// //      vvvvvvv An unsafe block
/// let _ = unsafe {
///     1 + 2
/// //  ^^^^^ An expression which value is returned from the block, indicated
/// //        by the missing semicolon at the end.
/// };
///
/// //      vvvvvv An optional label to be targeted by break expressions
/// let _ = 'label: {
///     let _ = 18;
/// //  ^^^^^^^^^^^
/// // A statement in the block
///     12
/// };
/// ```
///
/// [`BlockExpr`] nodes are often simply called *blocks*, while the optional
/// expression at the end of a block is called *block expression*. The meaning
/// depends on the context. Marker's documentation will try to make the meaning
/// clear by linking directly to the [`BlockExpr`] struct or calling it a *block*.
///
/// This expression also represents async blocks, the internal desugar used by
/// rustc is resugared for this.
#[repr(C)]
#[derive(Debug)]
pub struct BlockExpr<'ast> {
    data: CommonExprData<'ast>,
    stmts: FfiSlice<'ast, StmtKind<'ast>>,
    expr: FfiOption<ExprKind<'ast>>,
    label: FfiOption<Ident<'ast>>,
    safety: Safety,
    syncness: Syncness,
    capture_kind: CaptureKind,
}

impl<'ast> BlockExpr<'ast> {
    /// This returns all statements of this block. The optional value expression,
    /// which is returned by the block, is stored separately. See [`BlockExpr::expr()`]
    pub fn stmts(&self) -> &[StmtKind<'ast>] {
        self.stmts.get()
    }

    /// Blocks may optionally end with an expression, indicated by an expression
    /// without a trailing semicolon.
    pub fn expr(&self) -> Option<ExprKind<'ast>> {
        self.expr.copy()
    }

    pub fn label(&self) -> Option<&Ident<'ast>> {
        self.label.get()
    }

    pub fn safety(&self) -> Safety {
        self.safety
    }

    pub fn syncness(&self) -> Syncness {
        self.syncness
    }

    /// The capture kind of this block. For normal blocks, this will always be
    /// [`CaptureKind::Default`], which in this context means no capture at all.
    /// Async blocks are special, as they can capture values by move, indicated
    /// by the `move` keyword, like in this:
    ///
    /// ```
    /// # use std::future::Future;
    /// # fn foo<'a>(x: &'a u8) -> impl Future<Output = u8> + 'a {
    /// // The whole block expression
    /// //  vvvvvvvvvvvvvvvvv
    ///     async move { *x }
    /// //        ^^^^
    /// // The move keyword defining the capture kind
    /// # }
    /// ```
    pub fn capture_kind(&self) -> CaptureKind {
        self.capture_kind
    }
}

super::impl_expr_data!(BlockExpr<'ast>, Block);

#[cfg(feature = "driver-api")]
impl<'ast> BlockExpr<'ast> {
    pub fn new(
        data: CommonExprData<'ast>,
        stmts: &'ast [StmtKind<'ast>],
        expr: Option<ExprKind<'ast>>,
        label: Option<Ident<'ast>>,
        safety: Safety,
        syncness: Syncness,
        capture_kind: CaptureKind,
    ) -> Self {
        Self {
            data,
            stmts: stmts.into(),
            expr: expr.into(),
            label: label.into(),
            safety,
            syncness,
            capture_kind,
        }
    }
}

/// A closure expression
///
/// ```
/// //          vvvvvvvvvvvvvvvvvvvvvvvvvvvvv A Closure expression
/// let print = |name| println!("Hey {name}");
/// //           ^^^^  ^^^^^^^^^^^^^^^^^^^^^ The body of the closure
/// //           |
/// //           A named argument
///
/// //          vvvv The `move` keyword specifying the capture kind of the closure
/// let msger = move || {
///     print("Marker")
/// };
/// ```
#[repr(C)]
#[derive(Debug)]
pub struct ClosureExpr<'ast> {
    data: CommonExprData<'ast>,
    capture_kind: CaptureKind,
    params: FfiSlice<'ast, ClosureParam<'ast>>,
    return_ty: FfiOption<TyKind<'ast>>,
    body_id: BodyId,
}

impl<'ast> ClosureExpr<'ast> {
    pub fn capture_kind(&self) -> CaptureKind {
        self.capture_kind
    }

    pub fn params(&self) -> &'ast [ClosureParam<'ast>] {
        self.params.get()
    }

    pub fn return_ty(&self) -> Option<TyKind<'_>> {
        self.return_ty.copy()
    }

    pub fn body_id(&self) -> BodyId {
        self.body_id
    }
}

super::impl_expr_data!(ClosureExpr<'ast>, Closure);

#[cfg(feature = "driver-api")]
impl<'ast> ClosureExpr<'ast> {
    pub fn new(
        data: CommonExprData<'ast>,
        capture_kind: CaptureKind,
        params: &'ast [ClosureParam<'ast>],
        return_ty: Option<TyKind<'ast>>,
        body_id: BodyId,
    ) -> Self {
        Self {
            data,
            capture_kind,
            params: params.into(),
            return_ty: return_ty.into(),
            body_id,
        }
    }
}

#[repr(C)]
#[non_exhaustive]
#[derive(Debug, Clone, Copy)]
pub enum CaptureKind {
    Default,
    Move,
}

/// A parameter for a [`ClosureExpr`], with a pattern and an optional type, like:
///
/// ```
/// # let _: fn(u32) -> () =
/// // A simple parameter
/// //   v
///     |x| { /*...*/ };
///
/// // A parameter with a type
/// //   vvvvvv
///     |y: u32| { /*...*/ };
///
/// # let _: fn((u32, u32, u32)) -> () =
/// // A parameter with a complex pattern
/// //   vvvvvvvv
///     |(a, b, c)| { /*...*/ };
/// ```
#[repr(C)]
#[derive(Debug)]
pub struct ClosureParam<'ast> {
    span: SpanId,
    pat: PatKind<'ast>,
    ty: FfiOption<TyKind<'ast>>,
}

impl<'ast> ClosureParam<'ast> {
    pub fn span(&self) -> &Span<'ast> {
        with_cx(self, |cx| cx.span(self.span))
    }

    pub fn pat(&self) -> PatKind<'ast> {
        self.pat
    }

    pub fn ty(&self) -> Option<TyKind<'ast>> {
        self.ty.copy()
    }
}

#[cfg(feature = "driver-api")]
impl<'ast> ClosureParam<'ast> {
    pub fn new(span: SpanId, pat: PatKind<'ast>, ty: Option<TyKind<'ast>>) -> Self {
        Self {
            span,
            pat,
            ty: ty.into(),
        }
    }
}