1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
//! Provides mappable `Rc` and `Arc` implementations.
//!
//! This crate provides two types: [`Marc`] and [`Mrc`], corresponding to `std`'s [`Arc`] and [`Rc`]
//! types. For the most part, these types are near drop in replacements; they also provide shared
//! ownership via reference countings, many of the same methods, and almost all of the same trait
//! impls. The key difference is the existence of the `map` method on both types. For example, you
//! can use [`Mrc::map`] to subslice an `Mrc<[u32]>`:
//!
//! ```rust
//! use mappable_rc::Mrc;
//!
//! let m: Mrc<[u32]> = vec![1, 2, 3, 4].into();
//! assert_eq!(m.as_ref(), &[1, 2, 3, 4]);
//!
//! let m: Mrc<[u32]> = Mrc::map(m, |slice| &slice[1..=2]);
//! assert_eq!(m.as_ref(), &[2, 3]);
//! ```
//!
//! The `map` functions do not require preserving types. For example:
//!
//! ```rust
//! use mappable_rc::Mrc;
//!
//! struct S(u32);
//!
//! let m: Mrc<S> = Mrc::new(S(5));
//! let inner: Mrc<u32> = Mrc::map(m, |s| &s.0);
//!
//! assert_eq!(inner.as_ref(), &5);
//! ```
//!
//! You can use the types provided by this crate even if other code hands you an `Rc` or an `Arc`.
//! See the [`Mrc::from_rc`] and [`Marc::from_arc`] methods, and the corresponding `From` impls.
//!
//! ## Performance
//!
//! The performance characteristics of the types in this crate are very similar to the corresponding
//! `std` types. The data pointer is stored directly in the struct, and so the referenced data is
//! only one indirection away. The `Marc` implementation internally reuses the `Arc` from `std`, and
//! so the atomic operations are expected to be no more or less efficient.
//!
//! A number of the trait implementations in this crate are more efficient than the corresponding
//! `std` implementsions. `Mrc<[T]>: From<Vec<T>>` is implemented like this:
//!
//! ```rust
//! use mappable_rc::Mrc;
//!
//! let v = vec![1; 1000];
//! let m: Mrc<Vec<i32>> = Mrc::new(v);
//! let m: Mrc<[i32]> = Mrc::map(m, |v| &v[..]);
//! ```
//!
//! This means that the data in the `Vec` is never copied and only a small allocation is performed.
//! The same implementation for `Arc<[T]>` will perform a copy of the `Vec`'s data, to ensure that
//! the memory format complies with the more stringent requirements of `Arc`.
//!
//! The main performance downside of these types is that the size of `Mrc` and `Marc` is two
//! `usize`s greater than the size of the corresponding `std` type.
//!
//! ## `#![no_std]`
//!
//! This crate is `#![no_std]` by default, but of course depends on `alloc`. There is a non-default
//! `std` feature that provides implementations of `std::error::Error`, `From<OsString>` and
//! `From<PathBuf>`. Activating this feature introduces an `std` dependency.
//!
//! This crate has no other dependencies.
#![no_std]
use core::ptr::NonNull;
use core::{any::Any, ops::Deref};
use alloc::rc::Rc;
use alloc::sync::Arc;
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
mod std_impls;
pub struct Marc<T: ?Sized + 'static> {
// SAFETY:
// - This is well aligned and points to a valid `T`
// - This is valid for at least as long as `alloc`
data: NonNull<T>,
alloc: Arc<dyn Any + Send>,
}
// SAFETY: A `Marc<T>` only gives shared access to a `T`. This impl does not have the `Send` bound
// that the std impl has; that's because we never hand out a `&mut T` (doing so would be UB anyway).
// The equivalent of the `Send` bound, is the `Send` requirement for the `alloc`.
unsafe impl<T: Sync> Send for Marc<T> {}
// SAFETY: A `Marc<T>` being `Sync` is basically equivalent to it being `Send`, so we require the
// same bounds.
unsafe impl<T: Sync> Sync for Marc<T> {}
pub struct Mrc<T: ?Sized + 'static> {
// SAFETY:
// - This is well aligned and points to a valid `T`
// - This is valid for at least as long as `alloc`
data: NonNull<T>,
// Guarantees that we're non-`Send` and non-`Sync`
alloc: Rc<dyn Any>,
}
macro_rules! impls {
($name:ident, $l:literal) => {
impl<T: ?Sized> Deref for $name<T> {
type Target = T;
fn deref(&self) -> &T {
// SAFETY: See safety comment on the field
unsafe { self.data.as_ref() }
}
}
impl<T: ?Sized> $name<T> {
/// Returns a read-only pointer to the referred to data.
///
/// The pointer is valid for as long as this value is alive.
pub fn as_ptr(&self) -> *const T {
self.data.as_ptr() as *const _
}
/// Maps the value to a new
#[doc = concat!("`", $l, "`")]
/// that refers to the data returned by the closure.
///
/// This only changes what data *this particular*
#[doc = concat!("`", $l, "`")]
/// refers to. It does not introduce mutability - any
#[doc = concat!("`", $l, "<T>`s")]
/// you've cloned from this one in the past still point to the same thing. Of course, if
/// you clone the value returned by this function, then the resulting
#[doc = concat!("`", $l, "<U>`s")]
/// will also point to the mapped value.
///
/// This does not cause the `T` to be dropped early. Even if the `&U` refers to only a
/// part of the `&T`, no part of the `T` is dropped until all references to or into the
/// `T` are gone, at which point the entire `T` is dropped at once.
pub fn map<U: ?Sized + 'static, F: FnOnce(&T) -> &U>(self_: Self, f: F) -> $name<U> {
let r = self_.deref();
// Panic safety: Panicking here only causes `orig` to be dropped
let out = f(r) as *const _;
// SAFETY: Pointer is the result of a reference, so not null.
let data = unsafe { NonNull::new_unchecked(out as *mut _) };
// SAFETY: The "actual" lifetime being passed to `f` should be understood to be the lifetime
// of `self.alloc`. In other words the reference passed into `f` is valid as long as
// `alloc` is. Hence it satisfies the safety requirements for `data`. Using a fake lifetime
// here is ok because lifetime specilization is not possible.
$name {
data,
alloc: self_.alloc,
}
}
/// Attempts to map the
#[doc = concat!("`", $l, "<T>`")]
/// , returning the new value on success and the old value otherwise.
///
/// This is simply a fallible version of
#[doc = concat!("[`", $l, "::map`]")]
/// , and generally has all the same properties.
pub fn try_map<U: ?Sized + 'static, F: FnOnce(&T) -> Option<&U>>(
self_: Self,
f: F,
) -> Result<$name<U>, $name<T>> {
let r = self_.deref();
match f(r) {
Some(p) => {
// SAFETY: For all safety concerns, see `map`
let data = unsafe { NonNull::new_unchecked(p as *const _ as *mut _) };
Ok($name {
data,
alloc: self_.alloc,
})
}
None => Err(self_),
}
}
/// Maps the value that the
#[doc = concat!("`", $l, "`")]
/// refers to, without taking ownership.
///
/// This is equivalent to cloning, mapping, and then writing to `self`, except that it
/// is slightly more efficient because it avoids the clone.
///
/// `self` is left unchanged if `f` panics.
pub fn map_in_place<F: FnOnce(&T) -> &T>(self_: &mut Self, f: F) {
let r = self_.deref();
// Panic safety: `self` is unmodified and the data pointer continues to be valid as
// we only hand out immutable references.
let out = f(r);
// SAFETY: This is effectively the same operation as in `map`.
self_.data = unsafe { NonNull::new_unchecked(out as *const _ as *mut _) };
}
}
};
}
impls!(Marc, "Marc");
impls!(Mrc, "Mrc");
impl<T: Send + 'static> Marc<T> {
/// Creates a new `Marc` from an [`Arc`] that shares ownership of the `Arc`'s data.
///
/// Like [`Marc::new`], this method requires `T: Send + Sized + 'static`. If you have an
/// `Arc<T>` where `T: ?Sized`, then you can create an `Marc<T>` via [`Marc::from_borrow`].
///
/// As long as the returned `Marc` is alive, the strong count of the `Arc` will be at least one.
/// This is also the case if any `Marc`'s derived from the return value via [`Clone`] and
/// [`Marc::map`] are alive. The strong count of the input `Arc` could be observed by another
/// `Arc` also sharing ownership of the data. It is not specified whether clones of the return
/// value will be reflected in that strong count.
///
/// This function is essentially free to call. After inlining, it will consist of one to two
/// pointer copies.
pub fn from_arc(arc: Arc<T>) -> Self {
let p = Arc::as_ptr(&arc) as *mut T;
// SAFETY: The pointer was returned by `Arc::as_ptr` and so is not null
unsafe {
Self {
data: NonNull::new_unchecked(p),
alloc: arc,
}
}
}
/// Creates a new `Marc` that provides shared ownership of the `T`.
///
/// This method, like all ways of creating an `Marc`, has a `Send + 'static` bound that is not
/// found on the corresponding `Arc` method. You can avoid the `Send` requirement by using
/// [`Mrc::from_borrow`] to create an [`Mrc`] instead. The `'static` requirement is
/// fundamentally necessary for the soundness of this type and cannot be circumvented.
pub fn new(t: T) -> Self {
Marc::from_arc(Arc::new(t))
}
}
/// Creates a new `Marc<T>` sharing ownership of the same data.
impl<T: ?Sized> Clone for Marc<T> {
fn clone(&self) -> Self {
Self {
data: self.data,
alloc: Arc::clone(&self.alloc),
}
}
}
impl<T: Send + 'static> From<Arc<T>> for Marc<T> {
fn from(a: Arc<T>) -> Self {
Marc::from_arc(a)
}
}
impl<T: 'static> Mrc<T> {
/// Creates a new `Mrc` from an [`Rc`] that shares ownership of the `Rc`'s data.
///
/// Like [`Mrc::new`], this method requires `T: Sized + 'static`. If you have an
/// `Rc<T>` where `T: ?Sized`, then you can create an `Mrc<T>` via [`Mrc::from_borrow`].
///
/// As long as the returned `Mrc` is alive, the strong count of the `Rc` will be at least one.
/// This is also the case if any `Mrc`'s derived from the return value via [`Clone`] and
/// [`Mrc::map`] are alive. The strong count of the input `Rc` could be observed by another `Rc`
/// also sharing ownership of the data. It is not specified whether clones of the return value
/// will be reflected in that strong count.
///
/// This function is essentially free to call. After inlining, it will consist of one to two
/// pointer copies.
pub fn from_rc(rc: Rc<T>) -> Self {
let p = Rc::as_ptr(&rc) as *mut T;
// SAFETY: The pointer was returned by `Rc::as_ptr` and so is not null
unsafe {
Self {
data: NonNull::new_unchecked(p),
alloc: rc,
}
}
}
/// Creates a new `Mrc` that provides shared ownership of the `T`.
///
/// This method, like all ways of creating an `Mrc`, has a `'static` bound that is not found on
/// the corresponding `Rc` method. That requirement is fundamentally necessary for the soundness
/// of this type and cannot be circumvented.
pub fn new(t: T) -> Self {
Mrc::from_rc(Rc::new(t))
}
}
/// Creates a new `Mrc<T>` sharing ownership of the same data.
impl<T: ?Sized> Clone for Mrc<T> {
fn clone(&self) -> Self {
Self {
data: self.data,
alloc: Rc::clone(&self.alloc),
}
}
}
impl<T: 'static> From<Rc<T>> for Mrc<T> {
fn from(a: Rc<T>) -> Self {
Mrc::from_rc(a)
}
}
#[cfg(test)]
mod tests {
use core::{cell::RefCell, marker::PhantomData, ops::DerefMut, panic::AssertUnwindSafe};
extern crate std;
use std::panic::catch_unwind;
use alloc::vec;
use crate::*;
fn is_send<T: Send>(_: &T) {}
fn is_sync<T: Sync>(_: &T) {}
#[test]
fn clone_validity() {
let v = Mrc::new(vec![1, 2, 3]);
let c = v.clone();
let c = Mrc::map(c, |c| &c[1..]);
let v = v;
let c = c;
assert_eq!(&v[..], &[1, 2, 3]);
assert_eq!(&c[..], &[2, 3]);
}
#[test]
fn rc_validity() {
let a = Rc::new(vec![1, 2, 3]);
let m = Mrc::from_rc(Rc::clone(&a));
let m = Mrc::map(m, |m| &m[1..]);
let a = a;
let m = m;
assert_eq!(&a[..], &[1, 2, 3]);
assert_eq!(&m[..], &[2, 3]);
}
#[test]
fn init_correctness() {
let a = Rc::new(5);
assert_eq!(a.as_ref(), &5);
let b: Mrc<[i32]> = Mrc::from_borrow(vec![1, 2, 3, 4]);
assert_eq!(b.as_ref(), &[1, 2, 3, 4]);
let c: Mrc<i32> = Mrc::from_rc(Rc::new(5));
assert_eq!(c.as_ref(), &5);
}
// Ensures we get a compile error if we break this
#[test]
fn minimum_impls() {
let a = Marc::new(5);
is_send(&a);
is_sync(&a);
}
#[test]
fn mapped_sync() {
// Send, not Sync
struct S(i32, PhantomData<RefCell<i32>>);
let m = Marc::new(S(10, PhantomData));
let m = Marc::map(m, |s| &s.0);
is_send(&m);
}
#[test]
fn in_place_panic() {
let mut m = Mrc::new(5);
let mut r = AssertUnwindSafe(&mut m);
catch_unwind(move || Mrc::map_in_place(r.deref_mut(), |_| panic!())).unwrap_err();
assert_eq!(m.as_ref(), &5);
}
}